scholarly journals Graphene-Based Tunable Wideband Metamaterial Absorber With Polarization Insensitivity and Wide Incident Angle

2020 ◽  
Vol 8 ◽  
Author(s):  
Liansheng Wang ◽  
Dongyan Xia ◽  
Quanhong Fu ◽  
Xueyong Ding ◽  
Yuan Wang
2011 ◽  
Vol 115 ◽  
pp. 381-397 ◽  
Author(s):  
Xun-Jun He ◽  
Yue Wang ◽  
Jianmin Wang ◽  
Tailong Gui ◽  
Qun Wu

2021 ◽  
Vol 8 ◽  
Author(s):  
Liansheng Wang ◽  
Dongyan Xia ◽  
Quanhong Fu ◽  
Xueyong Ding ◽  
Yuan Wang

In this paper, we report a switchable ultra-wideband metamaterial absorber with polarization-insensitivity and wide-incident angle at THz band which is composed of VO2 disk, polyimide dielectric substrate, and gold ground plane. The results show that the absorption is greater than 90% from 3.5–8 THz for a temperature of 300 K and this absorption band disappears when the temperature rises to 350 K. The absorption property of our proposed metamaterial absorber is insensitive to polarization states and angles and it can withhold high absorption of more than 80% for wide-incident angles, up to 60° for TE mode and TM mode. The wideband absorption mechanism is elucidated using an effective medium and surface current analysis.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xuehan Liu ◽  
Keyang Li ◽  
Zhao Meng ◽  
Zhun Zhang ◽  
Zhongchao Wei

A subwavelength metamaterial perfect absorber (MPA) in optical communication band was proposed and tested using the finite-difference time-domain method. The absorber is periodic and comprises a top layer of diamond silicon surrounded by L-shaped silicon and a gold layer on the substrate. It can achieve dual-band perfect absorption, and one of the peaks is in the optical communication band. By changing the gap (g) between two adjacent pieces of L-shaped silicon, and the thickness (h) of the silicon layer, the resonance wavelength of absorption peak can be tuned. When the incident electromagnetic wave entered the absorber, the metamaterial absorber could almost completely consume the incident electromagnetic waves, thereby achieving more than 99% perfect absorption. The absorption peak reaches 99.986% at 1310 nm and 99.421% at 1550 nm. Moreover, the MPA exposed to different ambient refraction indexes can be applied as plasma sensors, and can achieve multi-channel absorption with high figure of merit (FOM*) value and refractive index (RI) sensitivity. The FOM* values at 1310 nm and 1550 nm are 6615 and 168, respectively, and both resonance peaks have highly RI sensitivity. The results confirm that the MPA is a dual-band, polarization-independent, wide-angle absorber and insensitive to incident angle. Thence it can be applied in the fields of optical communication, used as a light-wave filter and plasma sensor, and so on.


2021 ◽  
Vol 2109 (1) ◽  
pp. 012015
Author(s):  
Yiran Guo ◽  
Yunping Qi ◽  
Chuqin Liu ◽  
Weiming Liu ◽  
Xiangxian Wang

Abstract Graphene, as a new nano-material, according to the physical properties of electric field localization and selective absorption on light of surface plasmon resonance (SPR), a tunable, multi-band and wide-angle perfect absorber based on crosshair-shaped graphene is devised by using the Finite Difference in Time Domain (FDTD) method. In this paper, the effects of chemical potential, relaxation time, and incident angle of light on the absorptivity of graphene are systematically discussed. The simulation experiment shows that there are two absorption peaks with perfect absorption rate appeared in the study range, and the maximum modulation index can be obtained by changing the relaxation time. Finally, it proves that the absorber is insensitive to wide-angle of light. Thus, it is able to be concluded that the absorber has a great reference value to sensor, wireless communication, biomedical and other fields.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2590 ◽  
Author(s):  
Huafeng Liu ◽  
Kai Luo ◽  
Shihao Tang ◽  
Danhua Peng ◽  
Fangjing Hu ◽  
...  

Metamaterial-based absorbers have been extensively investigated in the terahertz (THz) range with ever increasing performances. In this paper, we propose an all-dielectric THz absorber based on doped silicon. The unit cell consists of a silicon cross resonator with an internal cross-shaped air cavity. Numerical results suggest that the proposed absorber can operate from THz to far-infrared regimes, having an average power absorption of ∼95% between 0.6 and 10 THz. Experimental results using THz time-domain spectroscopy show a good agreement with simulations. The underlying mechanisms for broadband absorption are attributed to the combined effects of multiple cavities modes formed by silicon resonators and bulk absorption in the doped silicon substrate, as confirmed by simulated field patterns and calculated diffraction efficiency. This ultra-wideband absorption is polarization insensitive and can operate across a wide range of the incident angle. The proposed absorber can be readily integrated into silicon-based photonic platforms and used for sensing, imaging, energy harvesting and wireless communications applications in the THz/IR range.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Javad Shabanpour ◽  
Sina Beyraghi ◽  
Homayoon Oraizi

Abstract Ultrawide-angle electromagnetic wave absorbers with excellent mechanical properties are required in many diverse applications such as sensing, and stealth technologies. Here, a novel 3D reconfigurable metamaterial absorber (MMA) consisting of honeycomb and VO2 films is proposed. The proposed MMA exhibits a strong absorptivity above 90% in the widest incident angle up to $$87^\circ $$ 87 ∘ for TM- and TE polarized oblique incidences for THz wave propagating in yoz-plane. Under normal incidence, when VO2 films are in the insulating state, the proposed absorber exhibits high absorptivity in the frequency band of 1–4 THz. By increasing the temperature of the whole structure, the structural transformation of VO2 occurs and turns into the metallic phase. We have shown that under oblique incidence, the ohmic losses of VO2 films especially those parallel to the direction of the incident electric field are the most important absorption principles of the proposed MMA. Due to the ultra wide-angle absorption (angular stability) and mechanical performance, it is expected that the presented MMA may find potential applications, such as camouflage technologies, electromagnetic interference, imaging, and sensing. To the best knowledge of authors, the proposed MMA configuration exhibits the absorptivity in the widest incident angle ever reported.


2014 ◽  
Vol 43 (11) ◽  
pp. 3949-3953 ◽  
Author(s):  
Furkan Dincer ◽  
Muharrem Karaaslan ◽  
Emin Unal ◽  
Oguzhan Akgol ◽  
Cumali Sabah

2017 ◽  
Vol 123 (10) ◽  
Author(s):  
Li Wang ◽  
Chuandeng Hu ◽  
Xiaoxiao Wu ◽  
Zengzilu Xia ◽  
Weijia Wen

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Lutful Hakim ◽  
Touhidul Alam ◽  
Ali F. Almutairi ◽  
Mohd Fais Mansor ◽  
Mohammad Tariqul Islam

AbstractPolarization insensitive metamaterial absorbers (MA) are currently very attractive due to their unique absorption properties at different polarization angles. As a result, this type of absorber is widely used in sensing, imaging, energy harvesting, etc. This paper presents the design and characterization of a dual-band polarization-insensitive metamaterial absorber (MA) for K-band applications. The metamaterial absorber consists of two modified split ring resonators with an inner cross conductor to achieve a 90% absorption bandwidth of 400 MHz (21.4–21.8 GHz) and 760 MHz (23.84–24.24 GHz) at transverse electromagnetic (TEM), transverse electric (TE), and transverse magnetic (TM) mode. Polarization insensitivity of different incident angles for TE and TM mode is also investigated, which reveals a similar absorption behavior up to 90°. The metamaterial structure generates single negative (SNG) property at a lower frequency of 21.6 GHz and double negative property (DNG) at an upper frequency of 24.04 GHz. The permittivity and pressure sensor application are investigated for the proposed absorber, which shows its useability in these applications. Finally, a comparison with recent works is also performed to demonstrate the feasibility of the proposed structure for K band application, like sensor, filter, invasive clock, etc.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 129525-129541 ◽  
Author(s):  
Sultan Mahmud ◽  
Sikder Sunbeam Islam ◽  
Ali F. Almutairi ◽  
Mohammad Tariqul Islam

Sign in / Sign up

Export Citation Format

Share Document