scholarly journals Diamond Detectors for Radiotherapy X-Ray Small Beam Dosimetry

2021 ◽  
Vol 9 ◽  
Author(s):  
C. Talamonti ◽  
K. Kanxheri ◽  
S. Pallotta ◽  
L. Servoli

Many new X-Ray treatment machines using small and/or non-standard radiation fields, e.g., Tomotherapy, Cyber-knife, and linear accelerators equipped with high-resolution multi-leaf collimators and on-board imaging system, have been introduced in the radiotherapy clinical routine within the last few years. The introduction of these new treatment modalities has led to the development of high conformal radiotherapy treatment techniques like Intensity Modulated photon Radiation Therapy, Volumetric Modulated Arc Therapy, and stereotactic radiotherapy. When using these treatment techniques, patients are exposed to non-uniform radiation fields, high dose gradients, time and space variation of dose rates, and beam energy spectrum. This makes reaching the required degree of accuracy in clinical dosimetry even more demanding. Continuing to use standard field procedures and detectors in fields smaller than 3 × 3 cm2, will generate a reduced accuracy of clinical dosimetry, running the risk to overshadowing the progress made so far in radiotherapy applications. These dosimetric issues represent a new challenge for medical physicists. To choose the most appropriate detector for small field dosimetry, different features must be considered. Short- and long-term stability, linear response to the absorbed dose and dose rate, no energy and angular dependence, are all needed but not sufficient. The two most sought-after attributes for small field dosimetry are water equivalence and small highly sensitive (high sensitivity) volumes. Both these requirements aim at minimizing perturbations of charged particle fluence approaching the Charged Particle Equilibrium condition as much as possible, while maintaining high spatial resolution by reducing the averaging effect for non-uniform radiation fields. A compromise between different features is necessary because no dosimeter currently fulfills all requirements, but diamond properties seem promising and could lead to a marked improvement. Diamonds have long been used as materials for dosimeters, but natural diamonds were only first used for medical applications in the 80 s. The availability of reproducible synthetic diamonds at a lower cost compared to natural ones made the diffusion of diamonds in dosimetry possible. This paper aims to review the use of synthetic poly and single-crystal diamond dosimeters in radiotherapy, focusing on their performance under MegaVoltage photon beams. Both commercial and prototype diamond dosimeters behaviour are described and analyzed. Moreover, this paper will report the main related results in literature, considering diamond development issues like growth modalities, electrical contacts, packaging, readout electronics, and how do they affect all the dosimetric parameters of interest such as signal linearity, energy dependence, dose-rate dependence, reproducibility, rise and decay times.

2011 ◽  
Vol 38 (6Part19) ◽  
pp. 3617-3617
Author(s):  
Y Wang ◽  
S Easterling ◽  
J Ting

2020 ◽  
Vol 152 ◽  
pp. S694
Author(s):  
S.B.C. Debnath ◽  
D. Tonneau ◽  
C. Fauquet ◽  
A. Goncalves ◽  
A. Tallet ◽  
...  

Author(s):  
Rolf Behrens ◽  
Hayo Zutz ◽  
Julian Busse

Abstract The energy distribution (spectrum) of pulsed photon radiation can hardly be measured using active devices, therefore, a thermoluminescence detector (TLD)-based few channel spectrometer is used in combination with a Bayesian data analysis to help resolve this problem. The spectrometer consists of 30 TLD layers interspaced by absorbers made of plastics and metals with increasing atomic numbers and thickness. Thus, the main idea behind the device is the deeper the radiation penetrates - the higher the radiation’s energy when the radiation impinges perpendicular to the front of the spectrometer. From the doses measured in the TLD layers and from further prior available information, the photon spectrum is deduced using a Bayesian data analysis leading to absolute spectra and doses including their uncertainties and coverage intervals. This spectrometer was successfully used in two different scenarios, i.e., for the spectrometry of the radiation field two different industrial type open beam pulsed X ray generators and secondly in three different radiation fields of a medical accelerator.


2019 ◽  
Vol 10 (2) ◽  
pp. 128-137
Author(s):  
A. V. Novichenko ◽  
R. V. Lukashevich ◽  
K. G. Senkovsky

Near background low dose rate measurements are important part of the environmental radiation monitoring. It is possible to fulfill energy response verification for the high sensitive dosimeters based on inorganic scintillation detectors in low energy region when creating reference X-ray fields with dose rates up to 5 µSv/h. The aim of this work was to create and study reference X-ray fields with low dose rate and narrow spectrum in the energy range from 15 to 250 keV using high-purity metal filters as a part of X-ray irradiator of AT300 X-ray calibration facility.To determine the main characteristics of created X-ray fields highly sensitive comparators of photon radiation based on NaI(Tl) scintillation detectors was used. The comparators were developed in “ATOMTEX”. To verify comparators energy response the reference AT5350/1 dosimeter and ionization chamber TM32003 with sensitive volume 10000 cm3 were used.Characteristics of X-ray fields that were created on the AT300 X-ray calibration facility to verify the energy response of high sensitive dosimeters based on scintillation detectors were investigated. The possibility to calibrate high sensitive dosimetric measuring instruments based on scintillation detectors in the energy range up to 250 keV in X-ray beams was shown.


1988 ◽  
Vol 64 (2) ◽  
pp. 163-166 ◽  
Author(s):  
N. A. Konyakhin ◽  
B. V. Zatolokin ◽  
V. G. Meshcheryakov ◽  
G. V. Tyamin

2009 ◽  
Vol 1203 ◽  
Author(s):  
Jen Bohon ◽  
John Smedley ◽  
Erik M. Muller ◽  
Jeffrey W. Keister

AbstractHigh quality single crystal and polycrystalline CVD diamond detectors with platinum contacts have been tested at the white beam X28C beamline at the National Synchrotron Light Source under high-flux conditions. The voltage dependence of these devices has been measured under DC and pulsed-bias conditions, establishing the presence or absence of photoconductive gain in each device. Linear response has been achieved over eleven orders of magnitude when combined with previous low flux studies. Temporal measurements with single crystal diamond detectors have resolved the ns scale pulse structure of the NSLS.


Author(s):  
Glenn Abramczyk ◽  
James Shuler ◽  
Steven J. Nathan ◽  
Allen C. Smith

The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. The essential functional requirements for RAM packaging are containment of the material, ensuring sub-criticality, and ensuring that the radiation hazard of the package, as represented by the radiation dose for the package, is within the regulatory limits. Knowledge of the composition of the material being shipped is also required. By placing the contents in a containment vessel which is helium leaktight, and limiting the mass so that subcriticality is ensured, the first two requirements are readily met. Some materials emit sufficiently strong photon radiation that a small amount of material can yield a large dose rate. Foreknowledge of the dose rate which will be present for a proposed content is a challenging issue for the SGQ approach. Issues associated with certification for several cases of contents which fall within the SGQ envelop are discussed.


2009 ◽  
Vol 1203 ◽  
Author(s):  
Erik M. Muller ◽  
John Smedley ◽  
Balaji Raghothamachar ◽  
Mengjia Gaowei ◽  
Jeffrey W. Keister ◽  
...  

AbstractX-ray topography data are compared with photodiode responsivity maps to identify potential candidates for electron trapping in high purity, single crystal diamond. X-ray topography data reveal the defects that exist in the diamond material, which are dominated by non-electrically active linear dislocations. However, many diamonds also contain defects configurations (groups of threading dislocations originating from a secondary phase region or inclusion) in the bulk of the wafer which map well to regions of photoconductive gain, indicating that these inclusions are a source of electron trapping which affect the performance of diamond X-ray detectors. It was determined that photoconductive gain is only possible with the combination of an injecting contact and charge trapping in the near surface region. Typical photoconductive gain regions are 0.2 mm across; away from these near-surface inclusions the device yields the expected diode responsivity.


Sign in / Sign up

Export Citation Format

Share Document