scholarly journals Infrared and Terahertz Compatible Absorber Based on Multilayer Film

2021 ◽  
Vol 9 ◽  
Author(s):  
Mingyang Yang ◽  
Ming Zhou ◽  
Jianwen Yu ◽  
Yibo Zhang ◽  
Benyan Xu ◽  
...  

In this paper, a similar Fabry-Perot cavity structure utilizing a multilayer film structure consisting of an ultrathin metal film is demonstrated for absorbing the infrared ray. This structure has low emissivity in the atmospheric window (3–5 and 8–14 μm) and high emissivity in the nonatmospheric window (5–8 μm). These properties improved the stealth performance which causes the high emissivity in 5–8 μm to radiate more energy to reduce its temperature. Based on this, the periodic microstructures were added to the surface of the materials that enhanced the absorption of terahertz wave (0.1–2.7 THz). The absorber based on multilayer film has a simple structure and low manufacturing cost. This work may provide a new strategy for infrared and terahertz compatible stealth technology.

Author(s):  
Matthew R. Libera ◽  
Martin Chen

Phase-change erasable optical storage is based on the ability to switch a micron-sized region of a thin film between the crystalline and amorphous states using a diffraction-limited laser as a heat source. A bit of information can be represented as an amorphous spot on a crystalline background, and the two states can be optically identified by their different reflectivities. In a typical multilayer thin-film structure the active (storage) layer is sandwiched between one or more dielectric layers. The dielectric layers provide physical containment and act as a heat sink. A viable phase-change medium must be able to quench to the glassy phase after melting, and this requires proper tailoring of the thermal properties of the multilayer film. The present research studies one particular multilayer structure and shows the effect of an additional aluminum layer on the glass-forming ability.


2020 ◽  
Vol 312 ◽  
pp. 206-212
Author(s):  
Ivan L. Tkhorzhevskiy ◽  
Anton D. Zaitsev ◽  
Petr S. Demchenko ◽  
Dmitry V. Zykov ◽  
Aleksei V. Asach ◽  
...  

In the present paper we demonstrate and compare different properties of Bi and Bi1-xSbx thin films placed on polyimide (PI) substrate in frequency range from 0.2 to 1.0 THz. Bi films with a thickness of 40, 105 and 150 nm have been studied as well as 150 nm Bi1-xSbx solid solutions with Sb concentration of 5, 8, 12 and 15 %. An effective refractive index and permittivity of whole substrate/film structures have been derived by using terahertz time-domain spectroscopy (THz-TDS) method. These measurements have shown the positive phase shift in PI substrate with a thickness of 42 μm and revealed that it is barely transparent in studied frequency range, but the whole substrate/film structure provides the negative phase shift of terahertz wave. It was shown that the permittivity depends on mobility of charge carriers which is driven by film thickness and antimony content.


Author(s):  
Bin LI ◽  
Kuei-jen LEE ◽  
Hsi-tseng CHOU ◽  
Shan-guo HUANG ◽  
Wan-yi GU

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Chenying Yang ◽  
Weidong Shen ◽  
Yueguang Zhang ◽  
Kan Li ◽  
Xu Fang ◽  
...  

1998 ◽  
Vol 525 ◽  
Author(s):  
A. R. Abramson ◽  
H. Tadal ◽  
P. Nieva ◽  
P. Zavracky ◽  
I. N. Miaoulis ◽  
...  

ABSTRACTThe radiative properties of a silicon wafer undergoing Rapid Thermal Processing (RTP) are contingent upon the doping level of the silicon substrate and film structure on the wafer, and fluctuate drastically with temperature and wavelength. For a lightly doped substrate, partial transparency effects must be considered that significantly affect absorption characteristics. Band gap, free carrier, and lattice absorption are the dominant absorption mechanisms and either individually or in concert have considerable effect on the overall absorption coefficient of the silicon wafer. At high doping levels, partial transparency effects dissipate, and the substrate may be considered optically thick. A numerical model has been developed to examine partial transparency effects, and to compare lightly doped (partially transparent) and heavily doped (opaque) silicon wafers with a multilayer film structure during RTP.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jun Hee Han ◽  
Dong-Young Kim ◽  
Dohong Kim ◽  
Kyung Cheol Choi

2018 ◽  
Vol 6 (23) ◽  
pp. 1801006 ◽  
Author(s):  
Liang Peng ◽  
Dongqing Liu ◽  
Haifeng Cheng ◽  
Shen Zhou ◽  
Mei Zu

Sign in / Sign up

Export Citation Format

Share Document