scholarly journals Asymmetric Interfacial Intermixing Associated Magnetic Coupling in LaMnO3/LaFeO3 Heterostructures

2021 ◽  
Vol 9 ◽  
Author(s):  
Binbin Chen ◽  
Nicolas Gauquelin ◽  
Robert J. Green ◽  
Johan Verbeeck ◽  
Guus Rijnders ◽  
...  

The structural and magnetic properties of LaMnO3/LaFeO3 (LMO/LFO) heterostructures are characterized using a combination of scanning transmission electron microscopy, electron energy-loss spectroscopy, bulk magnetometry, and resonant x-ray reflectivity. Unlike the relatively abrupt interface when LMO is deposited on top of LFO, the interface with reversed growth order shows significant cation intermixing of Mn3+ and Fe3+, spreading ∼8 unit cells across the interface. The asymmetric interfacial chemical profiles result in distinct magnetic properties. The bilayer with abrupt interface shows a single magnetic hysteresis loop with strongly enhanced coercivity, as compared to the LMO plain film. However, the bilayer with intermixed interface shows a step-like hysteresis loop, associated with the separate switching of the “clean” and intermixed LMO sublayers. Our study illustrates the key role of interfacial chemical profile in determining the functional properties of oxide heterostructures.

2021 ◽  
Vol 19 (10) ◽  
pp. 20-28
Author(s):  
Dhifaf Hussain Hassan ◽  
Sabah Jalal Fathi

The compound was prepared by sol-gel method for spontaneous combustion with certain weight ratios (x=0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9), the samples were calcined at a temperature (900oC) for a period of two hours(2h), then studied its structural and magnetic properties.one of the most prominent results that we obtained from the X-ray diffraction technique (XRD) is that compound has several phases. Where the sample (NiFe2O4) appeared to be polycrystalline and the dominant phase in it is the cubic phase, while the other phase is (Hematite)(Fe2O3) A crystal structure rhomboid (Rhombohedral), in addition to these two phases, the phase with the existing quaternary structure appeared (Sr2Fe2O5) its called (Orthorhombic). The results of the magnetic properties that were obtained through the (VSM) device, and one of the most important of these properties is the magnetic hysteresis loop by analyzing the magnetic hysteresis loop at (x=0.3), where the least area of the hysteresis loop or the least width of the hysteresis loop One of the most important parameters of the magnetic properties is the saturation magnetism (μS) and its value ranges from (19.76-3.86) (emu/gr), the highest value was at (X=0.3) and its value is (19.76emu/gr) and in general its value decreases with increasing concentration of strontium. The residual magnetism (Mr) ranges between (7.45-1.58) (emu/gr), where it reached its highest value at (x=0.3) and its value is (7.45emu/gr), and generally its value decreases with increasing concentration of strontium. In addition to that, there is another parameter which is coercion or Magnetic coercivity (Hc) ranges in value (1751.104-209.26) (Oe), reaching its lowest value at (x=0.3), and then increases with increasing strontium concentration until it reaches its highest value at (x=0.9), where it reached its value is (1751.104Oe). The square rate represented by the symbol (μi) has high values. This means that there is a mutual coupling between the soft and hard magnetic phases, which was the highest value at (x=0.3) and its value is (4.93).


2021 ◽  
Author(s):  
Michał Heczko ◽  
Mateusz Reczyński ◽  
Christian Näther ◽  
Beata Nowicka

The coercive field of the magnetic hysteresis loop of the 2D microporous honeycomb-like Ni–Nb network decreases with the increasing number and size of the s-block metal guest cations.


2012 ◽  
Vol 4 (3) ◽  
pp. 561-567 ◽  
Author(s):  
J. Islam ◽  
Y. Yamamoto ◽  
E. Shikoh ◽  
A. Fujiwara ◽  
H. Hori

Magnetic hysteresis loop changes from two-phase to single-phase with decreasing Si interlayer thickness in Co/Si/Co/GaAs. Coercive field of 50 nm Co deposited on Si layer decreases with the increase of Si interlayer thickness. Deposition of Au layer between Co and Si changes the magnetic hysteresis loop. We propose that the formation of cobalt silicides at the interface of Co and Si modulate magnetic properties of the trilayer without Au buffer layer.© 2012 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v4i3.10852 J. Sci. Res. 4 (3), 561-567 (2012)


2011 ◽  
Vol 495 ◽  
pp. 269-271
Author(s):  
K. Kosmas

Magnetic properties, namely B-H loops and Barkhausen noise, have been determined with respect to mechanical load in Armco steels. The monotonic response illustrated a clearly verified knee, corresponding to the initiation of plastic deformation.


2021 ◽  
Vol 7 (10) ◽  
pp. 139
Author(s):  
Oksana Koplak ◽  
Elizaveta Dvoretskaya ◽  
Maxim Stepanov ◽  
Alexander Karabulin ◽  
Vladimir Matyushenko ◽  
...  

A nanonet consisting of ultrathin Ni nanowires (diameter <4 nm) and Ni nanoballs (diameter <20 nm) has been grown through laser ablation of a Ni target in superfluid helium. At a low Ni concentration, the nanonet consists mainly of nanowires and manifests a rectangular magnetic hysteresis loop, while an increase in the Ni concentration results in an increase in both the concentration and diameter of the nanoballs. A decrease in hysteresis loop rectangularity is observed as the concentration of the nanoball increases. We show that the composition of the system can be determined from the changes in the magnetic hysteresis loop and the temperature dependence of magnetization. The significance of the work consists of the observation of evolution of magnetic properties of the ferromagnetic nanonet, while its composition varies from nanowires to a combined nanowires–nanoballs system.


2013 ◽  
Vol 10 (3) ◽  
pp. 459-471 ◽  
Author(s):  
Branko Koprivica ◽  
Alenka Milovanovic ◽  
Milic Djekic

The aim of this paper is to present the results of measurements for the magnetic hysteresis loop and the specific power loss of the electrical steel obtained with the toroidal samples of various dimensions. All samples have been made of the same material. Numerous measurements have been performed after the annealing of the samples. The measurements have been performed with control of the sinusoidal shape of the secondary voltage. Differences between the results of measurements have been analyzed. Change in the measured results, e.g. the shape of the hysteresis loop or the specific power loss has been correlated to the dimensions of the sample.


1996 ◽  
Vol 35 (Part 1, No. 7) ◽  
pp. 3882-3886 ◽  
Author(s):  
Masaru Nakamura ◽  
Tsukasa Hirayama ◽  
Yasuji Yamada ◽  
Yuichi Ikuhara ◽  
Yuh Shiohara

2008 ◽  
Vol 47 (12) ◽  
pp. 9013-9015 ◽  
Author(s):  
Guillemin Rodary ◽  
Sebastian Wedekind ◽  
Dirk Sander ◽  
Jürgen Kirschner

2019 ◽  
Vol 15 (1) ◽  
pp. 21-27
Author(s):  
E. A. Volegova ◽  
T. I. Maslova ◽  
V. O. Vas’kovskiy ◽  
A. S. Volegov

Introduction The introduction indicates the need for the use of permanent magnets in various technology fields. The necessity of measuring the limit magnetic hysteresis loop for the correct calculation of magnetic system parameters is considered. The main sources of error when measuring boundary hysteresis loops are given. The practical impossibility of verifying blocks of magnetic measuring systems element-by-element is noted. This paper is devoted to the development of reference materials (RMs) for the magnetic properties of hard magnetic materials based on Nd2Fe14B, a highly anisotropic intermetallic compound.Materials and measuring methods Nd-Fe-B permanent magnets were selected as the material for developing the RMs. RM certified values were established using a CYCLE‑3 apparatus included in the GET 198‑2017 State Primary Measurement Standard for units of magnetic loss power, magnetic induction of constant magnetic field in a range from 0.1 to 2.5 T and magnetic flux in a range from 1·10–5 to 3·10–2 Wb.Results and its discussion Based on the experimentally obtained boundary hysteresis loops, the magnetic characteristics were evaluated, the interval of permitted certified values was set, the measurement result uncertainty of certified values was estimated, the RM validity period was established and the first RM batch was released.Conclusion On the basis of conducted studies, the RM type for magnetic properties of NdFeB alloy-based hard magnetic materials was approved (MS NdFeB set). The developed RM set was registered under the numbers GSO 11059–2018 / GSO 11062–2018 in the State RM Register of the Russian Federation.


Sign in / Sign up

Export Citation Format

Share Document