scholarly journals Impact of Cation Stoichiometry on the Crystalline Structure and Superconductivity in Nickelates

2021 ◽  
Vol 9 ◽  
Author(s):  
Yueying Li ◽  
Wenjie Sun ◽  
Jiangfeng Yang ◽  
Xiangbin Cai ◽  
Wei Guo ◽  
...  

The recent discovery of superconductivity in infinite-layer nickelate films has aroused great interest since it provides a new platform to explore the mechanism of high-temperature superconductivity. However, superconductivity only appears in the thin film form and synthesizing superconducting nickelate films is extremely challenging, limiting the in-depth studies on this compound. Here, we explore the critical parameters in the growth of high-quality nickelate films using molecular beam epitaxy. We found that stoichiometry is crucial in optimizing the crystalline structure and realizing superconductivity in nickelate films. In precursor NdNiO3 films, optimal stoichiometry of cations yields the most compact lattice while off-stoichiometry of cations causes obvious lattice expansion, influencing the subsequent topotactic reduction and the emergence of superconductivity in infinite-layer nickelates. Surprisingly, in-situ reflection high energy electron diffraction indicates that some impurity phases always appear once Sr ions are doped into NdNiO3 although the X-ray diffraction data are of high quality. While these impurity phases do not seem to suppress the superconductivity, their impacts on the electronic and magnetic structure deserve further studies. Our work demonstrates and highlights the significance of cation stoichiometry in the superconducting nickelate family.

Author(s):  
Yoshichika Bando ◽  
Takahito Terashima ◽  
Kenji Iijima ◽  
Kazunuki Yamamoto ◽  
Kazuto Hirata ◽  
...  

The high quality thin films of high-Tc superconducting oxide are necessary for elucidating the superconducting mechanism and for device application. The recent trend in the preparation of high-Tc films has been toward “in-situ” growth of the superconducting phase at relatively low temperatures. The purpose of “in-situ” growth is to attain surface smoothness suitable for fabricating film devices but also to obtain high quality film. We present the investigation on the initial growth manner of YBCO by in-situ reflective high energy electron diffraction (RHEED) technique and on the structural and superconducting properties of the resulting ultrathin films below 100Å. The epitaxial films have been grown on (100) plane of MgO and SrTiO, heated below 650°C by activated reactive evaporation. The in-situ RHEED observation and the intensity measurement was carried out during deposition of YBCO on the substrate at 650°C. The deposition rate was 0.8Å/s. Fig. 1 shows the RHEED patterns at every stage of deposition of YBCO on MgO(100). All the patterns exhibit the sharp streaks, indicating that the film surface is atomically smooth and the growth manner is layer-by-layer.


2021 ◽  
Vol 52 (5) ◽  
pp. 1812-1825
Author(s):  
Sen Lin ◽  
Ulrika Borggren ◽  
Andreas Stark ◽  
Annika Borgenstam ◽  
Wangzhong Mu ◽  
...  

AbstractIn-situ high-energy X-ray diffraction experiments with high temporal resolution during rapid cooling (280 °C s−1) and isothermal heat treatments (at 450 °C, 500 °C, and 550 °C for 30 minutes) were performed to study austenite decomposition in two commercial high-strength low-alloy steels. The rapid phase transformations occurring in these types of steels are investigated for the first time in-situ, aiding a detailed analysis of the austenite decomposition kinetics. For the low hardenability steel with main composition Fe-0.08C-1.7Mn-0.403Si-0.303Cr in weight percent, austenite decomposition to polygonal ferrite and bainite occurs already during the initial cooling. However, for the high hardenability steel with main composition Fe-0.08C-1.79Mn-0.182Si-0.757Cr-0.094Mo in weight percent, the austenite decomposition kinetics is retarded, chiefly by the Mo addition, and therefore mainly bainitic transformation occurs during isothermal holding; the bainitic transformation rate at the isothermal holding is clearly enhanced by lowered temperature from 550 °C to 500 °C and 450 °C. During prolonged isothermal holding, carbide formation leads to decreased austenite carbon content and promotes continued bainitic ferrite formation. Moreover, at prolonged isothermal holding at higher temperatures some degenerate pearlite form.


2021 ◽  
Vol 800 ◽  
pp. 140249
Author(s):  
Juan Macchi ◽  
Steve Gaudez ◽  
Guillaume Geandier ◽  
Julien Teixeira ◽  
Sabine Denis ◽  
...  

2010 ◽  
Vol 504 ◽  
pp. S155-S158 ◽  
Author(s):  
J. Bednarcik ◽  
C. Curfs ◽  
M. Sikorski ◽  
H. Franz ◽  
J.Z. Jiang

2011 ◽  
Vol 21 (15) ◽  
pp. 5604 ◽  
Author(s):  
Zonghai Chen ◽  
Yang Ren ◽  
Yan Qin ◽  
Huiming Wu ◽  
Shengqian Ma ◽  
...  

2000 ◽  
Vol 639 ◽  
Author(s):  
Ryuhei Kimura ◽  
Kiyoshi Takahashi ◽  
H. T. Grahn

ABSTRACTAn investigation of the growth mechanism for RF-plasma assisted molecular beam epitaxy of cubic GaN films using a nitrided AlGaAs buffer layer was carried out by in-situ reflection high energy electron diffraction (RHEED) and high resolution X-ray diffraction (HRXRD). It was found that hexagonal GaN nuclei grow on (1, 1, 1) facets during nitridation of the AlGaAs buffer layer, but a highly pure, cubic-phase GaN epilayer was grown on the nitrided AlGaAs buffer layer.


2021 ◽  
Vol 118 (13) ◽  
pp. 132903
Author(s):  
Mao-Hua Zhang ◽  
Changhao Zhao ◽  
Lovro Fulanović ◽  
Jürgen Rödel ◽  
Nikola Novak ◽  
...  

Author(s):  
Partha P. Paul ◽  
Chuntian Cao ◽  
Vivek Thampy ◽  
Hans-Georg Steinrück ◽  
Tanvir R. Tanim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document