scholarly journals No Evidence That Hyperpnea-Based Respiratory Muscle Training Affects Indexes of Cardiovascular Health in Young Healthy Adults

2020 ◽  
Vol 11 ◽  
Author(s):  
Fernando G. Beltrami ◽  
David Mzee ◽  
Christina M. Spengler

IntroductionThe chronic effects of respiratory muscle training (RMT) on the cardiovascular system remain unclear. This investigation tested to which degree a single sessions of RMT with or without added vibration, which could enhance peripheral blood flow and vascular response, or a 4-week RMT program could result in changes in pulse wave velocity (PWV), blood pressure (systolic, SBP; diastolic, DBP) and other markers of cardiovascular health.MethodsSixteen young and healthy participants (8 m/8f) performed 15 min of either continuous normocapnic hyperpnea (RMET), sprint-interval-type hyperpnea (RMSIT) or a control session (quiet sitting). Sessions were performed once with and once without passive vibration of the lower limbs. To assess training-induced adaptations, thirty-four young and healthy participants (17 m/17f) were measured before and after 4 weeks (three weekly sessions) of RMET (n = 13, 30-min sessions of normocapnic hyperpnea), RMSIT [n = 11, 6 × 1 min (1 min break) normocapnic hyperpnea with added resistance] or placebo (n = 10).ResultsSBP was elevated from baseline at 5 min after each RMT session, but returned to baseline levels after 15 min, whereas DBP was unchanged from baseline following RMT. Carotid-femoral PWV (PWVCF) was elevated at 5 and 15 min after RMT compared to baseline (main effect of time, P = 0.001), whereas no changes were seen for carotid-radial PWV (PWVCR) or the PWVCF/PWVCR ratio. Vibration had no effects in any of the interventions. Following the 4-week training period, no differences from the placebo group were seen for SBP (P = 0.686), DBP (P = 0.233), PWVCF (P = 0.844), PWVCR (P = 0.815) or the PWVCF/PWVCR ratio (P = 0.389).Discussion/ConclusionAlthough 15 min of RMT sessions elicited transient increases in PWVCF and SBP, no changes were detected following 4 weeks of either RMET or RMSIT. Adding passive vibration of the lower limbs during RMT sessions did not provide additional value to the session with regards to vascular responses.

2020 ◽  
Vol 91 (10) ◽  
pp. 776-784
Author(s):  
Courtney E. Wheelock ◽  
Hayden W. Hess ◽  
Blair D. Johnson ◽  
Zachary J. Schlader ◽  
Brian M. Clemency ◽  
...  

INTRODUCTION: Hypoxia-induced hyperventilation is an effect of acute altitude exposure, which may lead to respiratory muscle fatigue and secondary locomotor muscle fatigue. The purpose of this study was to determine if resistive and/or endurance respiratory muscle training (RRMT and ERMT, respectively) vs. placebo respiratory muscle training (PRMT) improve cycling performance at altitude.METHODS: There were 24 subjects who were assigned to PRMT (N 8), RRMT (N 8), or ERMT (N 8). Subjects cycled to exhaustion in a hypobaric chamber decompressed to 3657 m (12,000 ft) at an intensity of 55% sea level maximal oxygen consumption (Vo2max) before and after respiratory muscle training (RMT). Additionally, subjects completed a Vo2max, pulmonary function, and respiratory endurance test (RET) before and after RMT. All RMT protocols consisted of three 30-min training sessions per week for 4 wk.RESULTS: The RRMT group increased maximum inspiratory (PImax) and expiratory (PEmax) mouth pressure after RMT (PImax: 117.7 11.6 vs. 162.6 20.0; PEmax: 164.0 33.2 vs. 216.5 44.1 cmH2O). The ERMT group increased RET after RMT (5.2 5.2 vs.18.6 16.9 min). RMT did not improve Vo2max in any group. Both RRMT and ERMT groups increased cycling time to exhaustion (RRMT: 35.9 17.2 vs. 45.6 22.2 min and ERMT: 33.8 9.6 vs. 42.9 27.0 min).CONCLUSION: Despite different improvements in pulmonary function, 4 wk of RRMT and ERMT both improved cycle time to exhaustion at altitude.Wheelock CE, Hess HW, Johnson BD, Schlader ZJ, Clemency BM, St. James E, Hostler D. Endurance and resistance respiratory muscle training and aerobic exercise performance in hypobaric hypoxia. Aerosp Med Hum Perform. 2020; 91(10):776784.


2021 ◽  
Vol 48 (2) ◽  
pp. 107-117
Author(s):  
Courtney E Wheelock ◽  
◽  
Hayden W Hess ◽  
Jocelyn Stooks ◽  
Jacqueline Schwob ◽  
...  

Introduction: Pre-dive altitude exposure may increase respiratory fatigue and subsequently augment exercise ventilation at depth. This study examined pre-dive altitude exposure and the efficacy of resistance respiratory muscle training (RMT) on respiratory fatigue while diving at altitude. Methods: Ten men (26±5 years; V̇O2peak: 39.8±3.3 mL•kg-1•min-1) performed three dives; one control (ground level) and two simulated altitude dives (3,658 m) to 17 msw, relative to ground level, before and after four weeks of resistance RMT. Subjects performed pulmonary function testing (e.g., inspiratory [PI] and expiratory [PE] pressure testing) pre- and post-RMT and during dive visits. During each dive, subjects exercised for 18 minutes at 55% V̇O2peak, and ventilation (V̇ E), breathing frequency (ƒb,), tidal volume (VT) and rating of perceived exertion (RPE) were measured. Results: Pre-dive altitude exposure reduced PI before diving (p=0.03), but had no effect on exercise V̇E, ƒb, or VT at depth. At the end of the dive in the pre-RMT condition, RPE was lower (p=0.01) compared to control. RMT increased PI and PE (p<0.01). PE was reduced from baseline after diving at altitude (p<0.03) and this was abated after RMT. RMT did not improve V̇E or VT at depth, but decreased ƒb (p=0.01) and RPE (p=0.048) during the final minutes of exercise. Conclusion: Acute altitude exposure pre- and post-dive induces decrements in PI and PE before and after diving, but does not seem to influence ventilation at depth. RMT reduced ƒb and RPE during exercise at depth, and may be useful to reduce work of breathing and respiratory fatigue during dives at altitude.


2015 ◽  
Vol 47 ◽  
pp. 681
Author(s):  
Andrew Scott ◽  
Christine McBride ◽  
Claire Francis ◽  
Natalie Stewart ◽  
Charlotte Corson ◽  
...  

2007 ◽  
Vol 22 (2) ◽  
pp. 98-104 ◽  
Author(s):  
Carrie Chueiri Ramos Galvan ◽  
Antônio José Maria Cataneo

PURPOSE: To evaluate the effect of utilization of a specific training program of respiratory muscles on pulmonary function in tobacco smokers. METHODS: Fifty asymptomatic tobacco smokers with age superior to 30 years were studied, at the moments: A0 - initial evaluation followed by protocol of respiratory exercises; A1 - reevaluation after 10 minutes of protocol application; and A2 - final reevaluation after 2 weeks of training utilizing the same protocol 3 times per week. The evaluation was realized through measures of maximum respiratory pressures (PImax and PEmax), respiratory peak flow (IPF and EPF), maximum voluntary ventilation (MVV), forced vital capacity (FVC) and forced expiratory volume at the 1st second (FEV1). RESULTS: There was no improvement from initial to final evaluation in FVC and FEV1. But there were significant increases in the variables IPF, EPF, MVV and PImax at evaluations A1 and A2. The PEmax variable increased only at evaluation A2. CONCLUSION: The application of the protocol of respiratory exercises with and without additional load in tobacco smokers produced immediate improvement in the performance of respiratory muscles, but this gain was more accentuated after 2 weeks of exercise.


Sign in / Sign up

Export Citation Format

Share Document