Endurance and Resistance Respiratory Muscle Training and Aerobic Exercise Performance in Hypobaric Hypoxia

2020 ◽  
Vol 91 (10) ◽  
pp. 776-784
Author(s):  
Courtney E. Wheelock ◽  
Hayden W. Hess ◽  
Blair D. Johnson ◽  
Zachary J. Schlader ◽  
Brian M. Clemency ◽  
...  

INTRODUCTION: Hypoxia-induced hyperventilation is an effect of acute altitude exposure, which may lead to respiratory muscle fatigue and secondary locomotor muscle fatigue. The purpose of this study was to determine if resistive and/or endurance respiratory muscle training (RRMT and ERMT, respectively) vs. placebo respiratory muscle training (PRMT) improve cycling performance at altitude.METHODS: There were 24 subjects who were assigned to PRMT (N 8), RRMT (N 8), or ERMT (N 8). Subjects cycled to exhaustion in a hypobaric chamber decompressed to 3657 m (12,000 ft) at an intensity of 55% sea level maximal oxygen consumption (Vo2max) before and after respiratory muscle training (RMT). Additionally, subjects completed a Vo2max, pulmonary function, and respiratory endurance test (RET) before and after RMT. All RMT protocols consisted of three 30-min training sessions per week for 4 wk.RESULTS: The RRMT group increased maximum inspiratory (PImax) and expiratory (PEmax) mouth pressure after RMT (PImax: 117.7 11.6 vs. 162.6 20.0; PEmax: 164.0 33.2 vs. 216.5 44.1 cmH2O). The ERMT group increased RET after RMT (5.2 5.2 vs.18.6 16.9 min). RMT did not improve Vo2max in any group. Both RRMT and ERMT groups increased cycling time to exhaustion (RRMT: 35.9 17.2 vs. 45.6 22.2 min and ERMT: 33.8 9.6 vs. 42.9 27.0 min).CONCLUSION: Despite different improvements in pulmonary function, 4 wk of RRMT and ERMT both improved cycle time to exhaustion at altitude.Wheelock CE, Hess HW, Johnson BD, Schlader ZJ, Clemency BM, St. James E, Hostler D. Endurance and resistance respiratory muscle training and aerobic exercise performance in hypobaric hypoxia. Aerosp Med Hum Perform. 2020; 91(10):776784.

2006 ◽  
Vol 31 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Jordan A Guenette ◽  
Andrea M Martens ◽  
Anne L Lee ◽  
Gradin D Tyler ◽  
Jennifer C Richards ◽  
...  

Respiratory muscle training (RMT) has been proposed as an effective means to increase the strength of the inspiratory muscles and improve exercise performance. The purpose of this study was to examine the effect of RMT on cycling time to exhaustion (TTE) and to determine any potential sex effect. We hypothesized that RMT would improve maximal inspiratory pressure (MIP) and TTE to a similar degreee in men and women. Males (n = 7; mean (± SD) age, 22.1 ± 1.5 y) and females (n = 8; mean (± SD) 24.5 ± 4.9 y) performed an incremental cycle test to determine maximal oxygen consumption ([Formula: see text]O2 max) (day 1), followed by a familiarization TTE (day 2) and baseline TTE (day 3) at 80% maximal work achieved during the [Formula: see text]O2 max test. Subjects then completed 5 weeks of respiratory muscle training (RMT) (5 d/week, 2 sets of 30 inspirations against 50% MIP). Four training sessions per week were performed at home and the 5th was supervised, during which the threshold load was increased if necessary. Following RMT, subjects completed 2 TTE tests (days 4 and 5). MIP increased in each subject (37% ± 18%, P < 0.05). There was no difference between men (pre = -100 ± 20 vs. post = -140 ± 29 cmH2O) and women (pre = -90 ± 28 vs. post = -117 ± 28 cmH2O). Baseline TTE (male = 301 ± 122 s; female = 338 ± 98 s) was shorter in comparison with the best of the 2 TTE-post tests (male = 353 ± 68 s; female = 416 ± 116 s; P < 0.01), but not when compared with days 4 or 5 (P > 0.05). RMT increases MIP and may improve exercise performance; however, improvements are variable with no differences between men and women.Key words: constant-intensity exercise, dyspnea, factors limiting exercise, maximal inspiratory pressure, respiratory muscles.


2007 ◽  
Vol 22 (2) ◽  
pp. 98-104 ◽  
Author(s):  
Carrie Chueiri Ramos Galvan ◽  
Antônio José Maria Cataneo

PURPOSE: To evaluate the effect of utilization of a specific training program of respiratory muscles on pulmonary function in tobacco smokers. METHODS: Fifty asymptomatic tobacco smokers with age superior to 30 years were studied, at the moments: A0 - initial evaluation followed by protocol of respiratory exercises; A1 - reevaluation after 10 minutes of protocol application; and A2 - final reevaluation after 2 weeks of training utilizing the same protocol 3 times per week. The evaluation was realized through measures of maximum respiratory pressures (PImax and PEmax), respiratory peak flow (IPF and EPF), maximum voluntary ventilation (MVV), forced vital capacity (FVC) and forced expiratory volume at the 1st second (FEV1). RESULTS: There was no improvement from initial to final evaluation in FVC and FEV1. But there were significant increases in the variables IPF, EPF, MVV and PImax at evaluations A1 and A2. The PEmax variable increased only at evaluation A2. CONCLUSION: The application of the protocol of respiratory exercises with and without additional load in tobacco smokers produced immediate improvement in the performance of respiratory muscles, but this gain was more accentuated after 2 weeks of exercise.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ji Cheol Shin ◽  
Eun Young Han ◽  
Kye Hee Cho ◽  
Sang Hee Im

AbstractCervical and upper thoracic spinal cord injury causes impairments in respiratory muscle performance, leading to variable degrees of pulmonary dysfunction and rendering deep breathing difficult for affected individuals. In this retrospective study, we investigated the effects of self-directed respiratory muscle training in this context by assessing pulmonary function relative to spinal cord injury characteristics. A total of 104 spinal cord injury patients (tetraplegia/paraplegia; 65/39, acute/subacute/chronic; 14/42/48) were admitted for short-term (4–8 weeks) in-patient clinical rehabilitation. Initial evaluation revealed a compromised pulmonary function with a percentage of predicted value of 62.0 and 57.5 in forced vital capacity in supine and forced vital capacity in sitting positions, respectively. Tetraplegic patients had more compromised pulmonary function compared with paraplegic patients. At follow-up evaluation, the percentage of predicted value of forced vital capacity in supine and sitting position improved overall on average by 11.7% and 12.7%, respectively. The peak cough flow improved by 22.7%. All assessed pulmonary function parameters improved significantly in all subgroups, with the greatest improvements found in patients with tetraplegia and subacute spinal cord injury. Therefore, short-term self-directed respiratory muscle training should be incorporated into all spinal cord injury rehabilitation regimens, especially for patients with tetraplegia and subacute spinal cord injury, as well as those with chronic spinal cord injury.


2015 ◽  
Vol 47 ◽  
pp. 758
Author(s):  
Andrew D. Ray ◽  
Brian T. Williams ◽  
Jennifer L. Cook ◽  
Nicholas Maxwell ◽  
Martin C. Mahoney

2021 ◽  
Vol 12 ◽  
Author(s):  
Chih-Cheng Huang ◽  
Yun-Ru Lai ◽  
Fu-An Wu ◽  
Nai-Ying Kuo ◽  
Ben-Chung Cheng ◽  
...  

Background: The effect of 3-month respiratory muscle training (RMT) on pulmonary and autonomic function and functional outcomes has been demonstrated in patients with Parkinson's disease (PD); however, there is a paucity of information on the durability of the training effect. In this study, we monitored the pulmonary and cardiovascular autonomic function and clinical severity scales until 18 months after the cessation of RMT to elucidate the detraining effect after RMT.Methods: All patients with PD receiving RMT were assessed with clinical severity scales as well as pulmonary and autonomic function tests at four different stages (baseline on enrollment, immediately after 3 months of RMT, and 6 and 18 months after cessation of RMT). A control group of PD patients who did not receive RMT was also recruited for comparison. Pulmonary function parameters, including forced vital capacity (FVC), forced expiratory volume in one second (FEV1), maximum inspiratory pressure (MIP), and maximum expiratory pressure (MEP), were assessed. Cardiovascular autonomic function was assessed using measures including heart rate response to deep breathing (HRDB), Valsalva ratio, and baroreflex sensitivity. Clinical severity scores were also measured using the Hoehn and Yahr staging and the Unified Parkinson's Disease Rating Scale (UPDRS).Results: The results showed significant improvements in MIP, MEP, HRDB, and UPDRS immediately after RMT. Despite some decay, the improvements in pulmonary function (MIP and MEP) and functional outcomes (UPDRS) remained significant until 6 months of detraining (9 months after enrollment). However, the improvement in cardiovascular autonomic function (HRDB) was reversed after 6 months of detraining.Conclusions: Based on these findings, we recommend that RMT may be repeated after at least 6 months after previous session (9 months after enrollment) for patients with PD to maintain optimal therapeutic effects.


2020 ◽  
Vol 9 (2) ◽  
pp. 316
Author(s):  
Chih-Cheng Huang ◽  
Yun-Ru Lai ◽  
Fu-An Wu ◽  
Nai-Ying Kuo ◽  
Yuh-Chyn Tsai ◽  
...  

Both pulmonary function and autonomic function are impaired in patients with Parkinson’s diseases (PD). This study tested the hypothesis that respiratory muscle training (RMT) can not only improve pulmonary function, but also simultaneously improve cardiovascular autonomic function and short-term functional outcomes in patients with PD. Pulmonary function was measured by the forced vital capacity (FVC), forced expiratory volume in one second (FEV1), maximum inspiratory pressures (MIP), and maximum expiratory pressures (MEP). Cardiovascular autonomic function was measured by the heart rate response to deep breathing (HRDB), Valsalva ratio, baroreflex sensitivity, and spectral analysis. The functional and severity scores were measured by the Hoehn and Yahr stage and Unified Parkinson’s Disease Rating Scale (UPDRS). These measures were evaluated in patients with PD before and after 3 months of RMT, compared with a control group of PD patients without RMT. The results showed significant improvement of clinical scores (total UPDRS and UPDRS I, II and III) after RMT (p < 0.0001). Concerning pulmonary function, the parameters of MIP and MEP improved significantly. The parameters of cardiovascular function also improved after RMT, although only HRDB reached statistical significance. Based on the results of our study, RMT can not only improve both pulmonary and cardiovascular autonomic function, but can also improve short-term functional outcomes in patients with PD.


2020 ◽  
Vol 11 ◽  
Author(s):  
Fernando G. Beltrami ◽  
David Mzee ◽  
Christina M. Spengler

IntroductionThe chronic effects of respiratory muscle training (RMT) on the cardiovascular system remain unclear. This investigation tested to which degree a single sessions of RMT with or without added vibration, which could enhance peripheral blood flow and vascular response, or a 4-week RMT program could result in changes in pulse wave velocity (PWV), blood pressure (systolic, SBP; diastolic, DBP) and other markers of cardiovascular health.MethodsSixteen young and healthy participants (8 m/8f) performed 15 min of either continuous normocapnic hyperpnea (RMET), sprint-interval-type hyperpnea (RMSIT) or a control session (quiet sitting). Sessions were performed once with and once without passive vibration of the lower limbs. To assess training-induced adaptations, thirty-four young and healthy participants (17 m/17f) were measured before and after 4 weeks (three weekly sessions) of RMET (n = 13, 30-min sessions of normocapnic hyperpnea), RMSIT [n = 11, 6 × 1 min (1 min break) normocapnic hyperpnea with added resistance] or placebo (n = 10).ResultsSBP was elevated from baseline at 5 min after each RMT session, but returned to baseline levels after 15 min, whereas DBP was unchanged from baseline following RMT. Carotid-femoral PWV (PWVCF) was elevated at 5 and 15 min after RMT compared to baseline (main effect of time, P = 0.001), whereas no changes were seen for carotid-radial PWV (PWVCR) or the PWVCF/PWVCR ratio. Vibration had no effects in any of the interventions. Following the 4-week training period, no differences from the placebo group were seen for SBP (P = 0.686), DBP (P = 0.233), PWVCF (P = 0.844), PWVCR (P = 0.815) or the PWVCF/PWVCR ratio (P = 0.389).Discussion/ConclusionAlthough 15 min of RMT sessions elicited transient increases in PWVCF and SBP, no changes were detected following 4 weeks of either RMET or RMSIT. Adding passive vibration of the lower limbs during RMT sessions did not provide additional value to the session with regards to vascular responses.


Sign in / Sign up

Export Citation Format

Share Document