scholarly journals Glutamate 73 Promotes Anti-arrhythmic Effects of Voltage-Dependent Anion Channel Through Regulation of Mitochondrial Ca2+ Uptake

2021 ◽  
Vol 12 ◽  
Author(s):  
Hirohito Shimizu ◽  
Simon Huber ◽  
Adam D. Langenbacher ◽  
Lauren Crisman ◽  
Jie Huang ◽  
...  

Mitochondria critically regulate a range of cellular processes including bioenergetics, cellular metabolism, apoptosis, and cellular Ca2+ signaling. The voltage-dependent anion channel (VDAC) functions as a passageway for the exchange of ions, including Ca2+, across the outer mitochondrial membrane. In cardiomyocytes, genetic or pharmacological activation of isoform 2 of VDAC (VDAC2) effectively potentiates mitochondrial Ca2+ uptake and suppresses Ca2+ overload-induced arrhythmogenic events. However, molecular mechanisms by which VDAC2 controls mitochondrial Ca2+ transport and thereby influences cardiac rhythmicity remain elusive. Vertebrates express three highly homologous VDAC isoforms. Here, we used the zebrafish tremblor/ncx1h mutant to dissect the isoform-specific roles of VDAC proteins in Ca2+ handling. We found that overexpression of VDAC1 or VDAC2, but not VDAC3, suppresses the fibrillation-like phenotype in zebrafish tremblor/ncx1h mutants. A chimeric approach showed that moieties in the N-terminal half of VDAC are responsible for their divergent functions in cardiac biology. Phylogenetic analysis further revealed that a glutamate at position 73, which was previously described to be an important regulator of VDAC function, is sevolutionarily conserved in VDAC1 and VDAC2, whereas a glutamine occupies position 73 (Q73) of VDAC3. To investigate whether E73/Q73 determines VDAC isoform-specific anti-arrhythmic effect, we mutated E73 to Q in VDAC2 (VDAC2E73Q) and Q73 to E in VDAC3 (VDAC3Q73E). Interestingly, VDAC2E73Q failed to restore rhythmic cardiac contractions in ncx1 deficient hearts, while the Q73E conversion induced a gain of function in VDAC3. In HL-1 cardiomyocytes, VDAC2 knockdown diminished the transfer of Ca2+ from the SR into mitochondria and overexpression of VDAC2 or VDAC3Q73E restored SR-mitochondrial Ca2+ transfer in VDAC2 deficient HL-1 cells, whereas this rescue effect was absent for VDAC3 and drastically compromised for VDAC2E73Q. Collectively, our findings demonstrate a critical role for the evolutionary conserved E73 in determining the anti-arrhythmic effect of VDAC isoforms through modulating Ca2+ cross-talk between the SR and mitochondria in cardiomyocytes.

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Jaunian Chen ◽  
Johann Schredelseker ◽  
Hirohito Shimizu ◽  
Jie Huang ◽  
Kui Lu ◽  
...  

Abnormal Ca2+ handling in cardiac muscle cells is associated with a wide range of human cardiac diseases, including heart failure and cardiac arrhythmias. Zebrafish tremblor (tre) mutant embryos manifest unsynchronized cardiac contractions due to a Ca2+ extrusion defect in cardiomyocytes and thus are used as an animal model for aberrant Ca2+ homeostasis-induced cardiac arrhythmia. To further dissect molecular mechanisms regulating cardiac Ca2+ homeostasis, we conducted a chemical suppressor screen on tre and found that efsevin, a synthetic compound, potently suppresses cardiac fibrillation and restores rhythmic cardiac contractions in tre embryos. In addition, the treatment with efsevin blocks the propagation of arrhythmogenic Ca2+ waves and accelerates the decay phase of Ca2+ sparks in adult murine cardiomyocytes under Ca2+ overload conditions, demonstrating that efsevin modulates Ca2+ handling in both embryonic and adult cardiac tissues. Through a biochemical pulldown assay, we identified a direct interaction between efsevin and VDAC2, a mitochondrial outer membrane voltage dependent anion channel. Overexpression of VDAC2 restores synchronized cardiac contraction in tre and knocking down VDAC2 activity abolishes the rescue effect of efsevin on tre, suggesting that efsevin modulates cardiac Ca2+ homeostasis by potentiating VDAC2 activity. We further showed that enhancing mitochondria Ca2+ uptake by overexpressing MICU or MCU suppresses cardiac fibrillation in tre just like VDAC2 does. Interestingly, this suppressive effect is absent in tre/vdac2 double deficient embryos and co-expression of VDAC2 and MICU or MCU results in synergistic rescue effect on tre, indicating a critical role for mitochondria in regulating cardiac Ca2+ handling and rhythmicity and suggesting that VDAC2 functions as a gate for transporting Ca2+ across the outer membrane. Taken together, our findings identify efsevin as a potent pharmacological tool to modulate cardiac Ca2+ handling, suggest a critical role of mitochondria in the control of cardiac rhythmicity and establish VDAC2 as a modulator of cardiac Ca2+ handling and a potential therapeutic target for the treatment of arrhythmias.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1485 ◽  
Author(s):  
Varda Shoshan-Barmatz ◽  
Anna Shteinfer-Kuzmine ◽  
Ankit Verma

The voltage-dependent anion channel 1 (VDAC1) protein, is an important regulator of mitochondrial function, and serves as a mitochondrial gatekeeper, with responsibility for cellular fate. In addition to control over energy sources and metabolism, the protein also regulates epigenomic elements and apoptosis via mediating the release of apoptotic proteins from the mitochondria. Apoptotic and pathological conditions, as well as certain viruses, induce cell death by inducing VDAC1 overexpression leading to oligomerization, and the formation of a large channel within the VDAC1 homo-oligomer. This then permits the release of pro-apoptotic proteins from the mitochondria and subsequent apoptosis. Mitochondrial DNA can also be released through this channel, which triggers type-Ι interferon responses. VDAC1 also participates in endoplasmic reticulum (ER)-mitochondria cross-talk, and in the regulation of autophagy, and inflammation. Its location in the outer mitochondrial membrane, makes VDAC1 ideally placed to interact with over 100 proteins, and to orchestrate the interaction of mitochondrial and cellular activities through a number of signaling pathways. Here, we provide insights into the multiple functions of VDAC1 and describe its involvement in several diseases, which demonstrate the potential of this protein as a druggable target in a wide variety of pathologies, including cancer.


2016 ◽  
Vol 473 (2) ◽  
pp. 107-121 ◽  
Author(s):  
Jemma Gatliff ◽  
Michelangelo Campanella

The 18-kDa translocator protein (TSPO) localizes in the outer mitochondrial membrane (OMM) of cells and is readily up-regulated under various pathological conditions such as cancer, inflammation, mechanical lesions and neurological diseases. Able to bind with high affinity synthetic and endogenous ligands, its core biochemical function resides in the translocation of cholesterol into the mitochondria influencing the subsequent steps of (neuro-)steroid synthesis and systemic endocrine regulation. Over the years, however, TSPO has also been linked to core cellular processes such as apoptosis and autophagy. It interacts and forms complexes with other mitochondrial proteins such as the voltage-dependent anion channel (VDAC) via which signalling and regulatory transduction of these core cellular events may be influenced. Despite nearly 40 years of study, the precise functional role of TSPO beyond cholesterol trafficking remains elusive even though the recent breakthroughs on its high-resolution crystal structure and contribution to quality-control signalling of mitochondria. All this along with a captivating pharmacological profile provides novel opportunities to investigate and understand the significance of this highly conserved protein as well as contribute the development of specific therapeutics as presented and discussed in the present review.


2019 ◽  
Vol 116 (40) ◽  
pp. 19924-19929 ◽  
Author(s):  
Colin H. Lipper ◽  
Jason T. Stofleth ◽  
Fang Bai ◽  
Yang-Sung Sohn ◽  
Susmita Roy ◽  
...  

MitoNEET is an outer mitochondrial membrane protein essential for sensing and regulation of iron and reactive oxygen species (ROS) homeostasis. It is a key player in multiple human maladies including diabetes, cancer, neurodegeneration, and Parkinson’s diseases. In healthy cells, mitoNEET receives its clusters from the mitochondrion and transfers them to acceptor proteins in a process that could be altered by drugs or during illness. Here, we report that mitoNEET regulates the outer-mitochondrial membrane (OMM) protein voltage-dependent anion channel 1 (VDAC1). VDAC1 is a crucial player in the cross talk between the mitochondria and the cytosol. VDAC proteins function to regulate metabolites, ions, ROS, and fatty acid transport, as well as function as a “governator” sentry for the transport of metabolites and ions between the cytosol and the mitochondria. We find that the redox-sensitive [2Fe-2S] cluster protein mitoNEET gates VDAC1 when mitoNEET is oxidized. Addition of the VDAC inhibitor 4,4′-diisothiocyanatostilbene-2,2′-disulfonate (DIDS) prevents both mitoNEET binding in vitro and mitoNEET-dependent mitochondrial iron accumulation in situ. We find that the DIDS inhibitor does not alter the redox state of MitoNEET. Taken together, our data indicate that mitoNEET regulates VDAC in a redox-dependent manner in cells, closing the pore and likely disrupting VDAC’s flow of metabolites.


2004 ◽  
Vol 377 (2) ◽  
pp. 347-355 ◽  
Author(s):  
Heftsi AZOULAY-ZOHAR ◽  
Adrian ISRAELSON ◽  
Salah ABU-HAMAD ◽  
Varda SHOSHAN-BARMATZ

In tumour cells, elevated levels of mitochondria-bound isoforms of hexokinase (HK-I and HK-II) result in the evasion of apoptosis, thereby allowing the cells to continue proliferating. The molecular mechanisms by which bound HK promotes cell survival are not yet fully understood. Our studies relying on the purified mitochondrial outer membrane protein VDAC (voltage-dependent anion channel), isolated mitochondria or cells in culture suggested that the anti-apoptotic activity of HK-I occurs via modulation of the mitochondrial phase of apoptosis. In the present paper, a direct interaction of HK-I with bilayer-reconstituted purified VDAC, inducing channel closure, is demonstrated for the first time. Moreover, HK-I prevented the Ca2+-dependent opening of the mitochondrial PTP (permeability transition pore) and release of the pro-apoptotic protein cytochrome c. The effects of HK-I on VDAC activity and PTP opening were prevented by the HK reaction product glucose 6-phosphate, a metabolic intermediate in most biosynthetic pathways. Furthermore, glucose 6-phosphate re-opened both the VDAC and the PTP closed by HK-I. The HK-I-mediated effects on VDAC and PTP were not observed using either yeast HK or HK-I lacking the N-terminal hydrophobic peptide responsible for binding to mitochondria, or in the presence of an antibody specific for the N-terminus of HK-I. Finally, HK-I overexpression in leukaemia-derived U-937 or vascular smooth muscle cells protected against staurosporine-induced apoptosis, with a decrease of up to 70% in cell death. These results offer insight into the mechanisms by which bound HK promotes tumour cell survival, and suggests that its overexpression not only ensures supplies of energy and phosphometabolites, but also reflects an anti-apoptotic defence mechanism.


2001 ◽  
Vol 152 (2) ◽  
pp. 289-300 ◽  
Author(s):  
Thomas Krimmer ◽  
Doron Rapaport ◽  
Michael T. Ryan ◽  
Chris Meisinger ◽  
C. Kenneth Kassenbrock ◽  
...  

Porin, also termed the voltage-dependent anion channel, is the most abundant protein of the mitochondrial outer membrane. The process of import and assembly of the protein is known to be dependent on the surface receptor Tom20, but the requirement for other mitochondrial proteins remains controversial. We have used mitochondria from Neurospora crassa and Saccharomyces cerevisiae to analyze the import pathway of porin. Import of porin into isolated mitochondria in which the outer membrane has been opened is inhibited despite similar levels of Tom20 as in intact mitochondria. A matrix-destined precursor and the porin precursor compete for the same translocation sites in both normal mitochondria and mitochondria whose surface receptors have been removed, suggesting that both precursors utilize the general import pore. Using an assay established to monitor the assembly of in vitro–imported porin into preexisting porin complexes we have shown that besides Tom20, the biogenesis of porin depends on the central receptor Tom22, as well as Tom5 and Tom7 of the general import pore complex (translocase of the outer mitochondrial membrane [TOM] core complex). The characterization of two new mutant alleles of the essential pore protein Tom40 demonstrates that the import of porin also requires a functional Tom40. Moreover, the porin precursor can be cross-linked to Tom20, Tom22, and Tom40 on its import pathway. We conclude that import of porin does not proceed through the action of Tom20 alone, but requires an intact outer membrane and involves at least four more subunits of the TOM machinery, including the general import pore.


Sign in / Sign up

Export Citation Format

Share Document