scholarly journals Properties, Structures, and Physiological Roles of Three Types of Anion Channels Molecularly Identified in the 2010’s

2021 ◽  
Vol 12 ◽  
Author(s):  
Yasunobu Okada ◽  
Ravshan Z. Sabirov ◽  
Petr G. Merzlyak ◽  
Tomohiro Numata ◽  
Kaori Sato-Numata

Molecular identification was, at last, successfully accomplished for three types of anion channels that are all implicated in cell volume regulation/dysregulation. LRRC8A plus LRRC8C/D/E, SLCO2A1, and TMEM206 were shown to be the core or pore-forming molecules of the volume-sensitive outwardly rectifying anion channel (VSOR) also called the volume-regulated anion channel (VRAC), the large-conductance maxi-anion channel (Maxi-Cl), and the acid-sensitive outwardly rectifying anion channel (ASOR) also called the proton-activated anion channel (PAC) in 2014, 2017, and 2019, respectively. More recently in 2020 and 2021, we have identified the S100A10-annexin A2 complex and TRPM7 as the regulatory proteins for Maxi-Cl and VSOR/VRAC, respectively. In this review article, we summarize their biophysical and structural properties as well as their physiological roles by comparing with each other on the basis of their molecular insights. We also point out unsolved important issues to be elucidated soon in the future.

Author(s):  
Yasunobu Okada ◽  
Kaori Sato-Numata ◽  
Ravshan Z. Sabirov ◽  
Tomohiro Numata

For survival and functions of animal cells, cell volume regulation (CVR) is essential. Major hallmarks of necrotic and apoptotic cell death are persistent cell swelling and shrinkage, and thus they are termed the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. A number of ubiquitously expressed anion and cation channels play essential roles not only in CVR but also in cell death induction. This series of review articles address the question how cell death is induced or protected with using ubiquitously expressed ion channels such as swelling-activated anion channels, acid-activated anion channels, and several types of TRP cation channels including TRPM2 and TRPM7. In the Part 1, we described the roles of swelling-activated VSOR/VRAC anion channels. Here, the Part 2 focuses on the roles of the acid-sensitive outwardly rectifying (ASOR) anion channel, also called the proton-activated chloride (PAC) anion channel, which is activated by extracellular protons in a manner sharply dependent on ambient temperature. First, we summarize phenotypical properties, the molecular identity, and the three-dimensional structure of ASOR/PAC. Second, we highlight the unique roles of ASOR/PAC in CVR dysfunction and in the induction of or protection from acidotoxic cell death under acidosis and ischemic conditions.


2019 ◽  
Vol 66 (2) ◽  
pp. 37-44 ◽  
Author(s):  
N.A. Tsiferova ◽  
O. J. Khamidova ◽  
A. U. Amonov ◽  
M. B. Rakhimova ◽  
S. I. Rustamova ◽  
...  

Abstract The volume-sensitive outwardly rectifying anion channel (VSOR) is a key component of volume regulation system critical for cell survival in non-isosmotic conditions. The aim of the present study was to test the effects of four tannin extracts with defined compositions on cell volume regulation and VSOR. Preparation I (98% of hydrolysable tannins isolated from leaves of sumac Rhus typhina L.) and Preparation II (100% of hydrolysable tannins isolated from leaves of broadleaf plantain Plantago major L) completely and irreversibly abolished swelling-activated VSOR currents in HCT116 cells. Both preparations profoundly suppressed the volume regulation in thymocytes with half-maximal effects of 40.9 μg/ml and 12.3 μg/ml, respectively. The inhibition was more efficient at lower concentrations but reverted at higher doses due to possible non-specific membrane-permeabilizing activity. Preparations III and IV (54,7% and 54.3% of hydrolysable tannins isolated, respectively, from roots and aboveground parts of Fergana spurge Euphorbia ferganensis B.Fedtch) inhibited VSOR activity in a partially reversible manner and suppressed the volume regulation with substantially higher half-maximal doses of 270 and 278 μg/ml, respectively, with no secondary reversion at higher doses. Hydrolysable tannins represent a novel class of VSOR channel inhibitors with the capacity to suppress the cell volume regulation machinery.


Author(s):  
Yasunobu Okada ◽  
Ravshan Z. Sabirov ◽  
Kaori Sato-Numata ◽  
Tomohiro Numata

Cell volume regulation (CVR) is essential for survival and functions of animal cells. Actually, normotonic cell shrinkage and swelling are coupled to apoptotic and necrotic cell death and thus called the apoptotic volume decrease (AVD) and the necrotic volume increase (NVI), respectively. A number of ubiquitously expressed anion and cation channels are involved not only in CVD but also in cell death induction. This series of review articles address the question how cell death is induced or protected with using ubiquitously expressed ion channels such as swelling-activated anion channels, acid-activated anion channels and several types of TRP cation channels including TRPM2 and TRPM7. The Part 1 focuses on the roles of the volume-sensitive outwardly rectifying anion channels (VSOR), also called the volume-regulated anion channel (VRAC), which is activated by cell swelling or reactive oxygen species (ROS) in a manner dependent on intracellular ATP. First we describe phenotypical properties, the molecular identity, and physical pore dimensions of VSOR/VRAC. Second, we highlight the roles of VSOR/VRAC in the release of organic signaling molecules, such as glutamate, glutathione, ATP and cGAMP, that play roles as double-edged swords in cell survival. Third, we discuss how VSOR/VRAC is involved in CVR and cell volume dysregulation as well as in the induction of or protection from apoptosis, necrosis and regulated necrosis under pathophysiological conditions.


2019 ◽  
Vol 400 (11) ◽  
pp. 1481-1496 ◽  
Author(s):  
Lingye Chen ◽  
Benjamin König ◽  
Tianbao Liu ◽  
Sumaira Pervaiz ◽  
Yasmin S. Razzaque ◽  
...  

Abstract The volume-regulated anion channel (VRAC) is a key player in the volume regulation of vertebrate cells. This ubiquitously expressed channel opens upon osmotic cell swelling and potentially other cues and releases chloride and organic osmolytes, which contributes to regulatory volume decrease (RVD). A plethora of studies have proposed a wide range of physiological roles for VRAC beyond volume regulation including cell proliferation, differentiation and migration, apoptosis, intercellular communication by direct release of signaling molecules and by supporting the exocytosis of insulin. VRAC was additionally implicated in pathological states such as cancer therapy resistance and excitotoxicity under ischemic conditions. Following extensive investigations, 5 years ago leucine-rich repeat-containing family 8 (LRRC8) heteromers containing LRRC8A were identified as the pore-forming components of VRAC. Since then, molecular biological approaches have allowed further insight into the biophysical properties and structure of VRAC. Heterologous expression, siRNA-mediated downregulation and genome editing in cells, as well as the use of animal models have enabled the assessment of the proposed physiological roles, together with the identification of new functions including spermatogenesis and the uptake of antibiotics and platinum-based cancer drugs. This review discusses the recent molecular biological insights into the physiology of VRAC in relation to its previously proposed roles.


2000 ◽  
Vol 70 (2) ◽  
pp. 633-638
Author(s):  
Xiwu Sun ◽  
Christopher T Ducko ◽  
Eric M Hoenicke ◽  
Karen Reigle ◽  
Ralph J Damiano

Sign in / Sign up

Export Citation Format

Share Document