scholarly journals Brachialis Muscle Activity Can Be Measured With Surface Electromyography: A Comparative Study Using Surface and Fine-Wire Electrodes

2021 ◽  
Vol 12 ◽  
Author(s):  
Shota Date ◽  
Hiroshi Kurumadani ◽  
Yuko Nakashima ◽  
Yosuke Ishii ◽  
Akio Ueda ◽  
...  

Muscle activities of the elbow flexors, especially the brachialis muscle (BR), have been measured with intramuscular electromyography (EMG) using the fine-wire electrodes. It remains unclear whether BR activity can be assessed using surface EMG. The purpose of this study was to compare the EMG patterns of the BR activity recorded during elbow flexion using surface and fine-wire electrodes and to determine whether surface EMG can accurately measure the BR activity. Six healthy men were asked to perform two tasks—a maximum isometric voluntary contractions (MVICs) task and an isotonic elbow-flexion task without lifting any weight. The surface and intramuscular EMG were simultaneously recorded from the BR and the long and short heads of the biceps brachii muscle (BBLH and BBSH, respectively). The locations of the muscles were identified and marked under ultrasonographic guidance. The peak cross-correlation coefficients between the EMG signals during the MVICs task were calculated. For the isotonic elbow-flexion task, the EMG patterns for activities of each muscle were compared between the surface and the fine-wire electrodes. All cross-correlation coefficients between the surface EMG signals from the muscles were lower than 0.3. Furthermore, the EMG patterns of the BR activity were not significantly different between the surface and the fine-wire electrodes. The BR has different EMG pattern from the BBLH and the BBSH. The BR activity, conventionally measured with intramuscular EMG, can be accurately accessed with surface EMG during elbow flexion performed without lifting any weight, independent from the BBLH and BBSH activities.

Author(s):  
Pramiti Sarker ◽  
Gary Mirka

Muscle fatigue can be evaluated through the assessment of the downward shift in the median frequency (MDF) of the electromyographic (EMG) signal collected through surface electromyography. Previous research has shown that the value of MDF may be affected by sampling parameters. The purpose of this study was to quantify the combined effect of different sampling frequencies and window sizes on the calculated MDF. A sample of 24 participants performed a simple static elbow flexion exertion (15% MVC) and the EMG activity of the biceps brachii was periodically sampled using surface electrodes for four seconds at a frequency of 4096 Hz as the biceps brachii became fatigued. These collected data were then down-sampled to create a dataset of four window sizes (1s, 2s, 3s, and 4s) and five sampling frequencies (256 Hz, 512 Hz, 1024 Hz, 2048 Hz, and 4096 Hz). Median frequencies were calculated for each combination of sampling frequency and window size and then compared with the 4096 Hz / 4 s condition (considered gold standard) and the errors were calculated. Results suggest the use of a minimum sampling frequency of 512 Hz and a window size of 4s.


1997 ◽  
Vol 82 (1) ◽  
pp. 144-151 ◽  
Author(s):  
J. R. Potvin

Potvin, J. R. Effects of muscle kinematics on surface EMG amplitude and frequency during fatiguing dynamic contractions. J. Appl. Physiol. 82(1): 144–151, 1997.—Fifteen male subjects performed a repetitive elbow flexion/extension task with a 7-kg mass until exhaustion. Average joint angle, angular velocity, and biceps brachii surface electromyographic (EMG) amplitude (aEMG) and mean power frequency (MPF) were calculated with each consecutive 250-ms segment of data during the entire trial. Data were separated into concentric or eccentric phases and into seven 20°-ranges from 0 to 140° of elbow flexion. A regression analysis was used to estimate the rested and fatigued aEMG and MPF values. aEMG values were expressed as a percentage of amplitudes from maximum voluntary contractions (MVC). Under rested dynamic conditions, the average concentric aEMG amplitude was 10% MVC higher than average eccentric values. Rested MPF values were similar for concentric and eccentric phases, although values increased ∼20 Hz from the most extended to flexed joint angles. Fatigue resulted in an average increase in concentric and eccentric aEMG of 35 and 10% MVC, respectively. The largest concentric aEMG increases (up to 58% MVC) were observed at higher joint velocities, whereas eccentric increases appeared to be related to decreases in velocity. Fatigue had a similar effect on MPF during both concentric and eccentric phases. Larger MPF decreases were observed at shorter muscle lengths such that values within each angle range were very similar by the end of the trial. It was hypothesized that this finding may reflect a biological minimum in conduction velocity before propagation failure occurs.


2017 ◽  
Vol 4 (2) ◽  
pp. 1 ◽  
Author(s):  
Rowan R. Smart ◽  
Cydney M. Richardson ◽  
Jennifer M. Jakobi

Objective: Examine the repeatability of ultrasound imaging for capturing cross sectional area (CSA), tendon length and elongation of the distal biceps brachii (dBB) tendon at rest and during submaximal elbow flexion contractions. The secondary purpose was to assess the influence of these architectural measures on tendon mechanics of stress and strain.Methods: Within a testing session and between two days CSA, tendon length and elongation of the dBB were captured with ultrasound. Measures were compared within a session and between days. Pearson’s correlations were performed to determine the intra-class correlation coefficients. Bland and Altman plots were used to identify the agreement between measures as well as the bias in measurements. Paired T-test were performed to ensure the calculated variables did not differ between days. Results: Resting tendon CSA was repeatable and strongly correlated (r = 0.98) within a session and between days; however, modest differences were observed in resting tendon length between days (1.8 mm) although values were correlated (r = 0.98). During submaximal contractions of 10%-80% maximal tendon elongation (r = 0.83) and CSA (r = 0.98) were also repeatable. From the measures of elongation and CSA, the calculated values of tendon strain (r = 0.97) and stress (r = 0.96) were also repeatable.Conclusions: Elongation and CSA of the dBB tendon captured with ultrasound are repeatable between testing sessions. Fromthese measures tendon mechanics can be calculated to define the tendon’s role in upper limb tasks, long-term adaptation anddiagnostics.


2011 ◽  
Vol 47 (5) ◽  
pp. 183-189
Author(s):  
Kenji SAITOU ◽  
Satoshi HOSOYA ◽  
Tadashi MASUDA ◽  
Morihiko OKADA

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1748
Author(s):  
Kohei Watanabe ◽  
Shideh Narouei

Surface electromyography (EMG) has been used to estimate muscle work and physiological burden of the whole body during human movements. However, there are spatial variations in surface EMG responses within individual muscles. The aim of this study was to investigate the relation between oxygen consumption and surface EMG responses of lower leg muscles during walking at various speeds and to quantify its spatial variation within an individual muscle. Nine young males walked on a treadmill at four speeds: preferred minus 1 km/h, preferred, preferred plus 1 km/h, and preferred plus 2 km/h, and the metabolic response was measured based on the expired gas. High-density surface EMG of the tibialis anterior (TA), medial gastrocnemius (MG), lateral gastrocnemius, and soleus muscles was performed using 64 two-dimensional electrode grids. Correlation coefficients between oxygen consumption and the surface EMG amplitude were calculated across the gait speeds for each channel in the electrode grid and for individual muscles. Mean correlation coefficients across electrodes were 0.69–0.87 for the four individual muscles, and the spatial variation of correlation between the surface EMG amplitude and oxygen consumption within an electrode grid was significantly greater in MG muscle than in TA muscle (Quartile deviations: 0.24 for MG and 0.02 for TA, p < 0.05). These results suggest that the physiological burden of the whole body during gait at various speeds can be estimated from the surface EMG amplitude of calf muscles, but we need to note its spatial distribution within the MG muscle.


Author(s):  
Matthias Weber ◽  
Anja Niehoff ◽  
Markus A. Rothschild

AbstractThis work deals with the examination of tool marks in human cartilage. We compared the effectiveness of several cleaning methods on cut marks in porcine cartilage. The method cleaning by multiple casts achieved the significantly highest scores (P = 0.02). Furthermore, we examined the grain-like elevations (dots) located on casts of cut cartilage. The results of this study suggest that the casting material forms these dots when penetrating cartilage cavities, which are areas where the strong collagen fibres leave space for the chondrocytes. We performed fixation experiments to avoid this, without success. In addition, 31 casting materials were compared regarding contrast under light-microscope and 3D tool marks scanner. Under the light-microscope, brown materials achieved significantly higher values than grey (P = 0.02) or black (P = 0.00) whereas under the 3D scanner, black materials reached higher contrast values than grey (P = 0.04) or brown (P = 0.047). To compare the accuracy and reproducibility of 6 test materials for cartilage, we used 10 knives to create cut marks that were subsequently scanned. During the alignment of the individual signals of each mark, the cross-correlation coefficients (Xmax) and lags (LXmax) were calculated. The signals of the marks in agarose were aligned with significantly fewer lags and achieved significantly higher cross-correlation coefficients compared to all tested materials (both P = 0.00). Moreover, we determined the cross-correlation coefficients (XC) for known-matches (KM) per material. Agarose achieved significantly higher values than AccuTrans®, Clear Ballistics™, and gelatine (all P = 0.00). The results of this work provide valuable insights for the forensic investigation of marks in human costal cartilage.


Author(s):  
Charles Deltour ◽  
Bart Dingenen ◽  
Filip Staes ◽  
Kevin Deschamps ◽  
Giovanni A. Matricali

Background: Foot–ankle motion is affected by chronic ankle instability (CAI) in terms of altered kinematics. This study focuses on multisegmental foot–ankle motion and joint coupling in barefoot and taped CAI patients during the three subphases of stance at running. Methods: Foot segmental motion data of 12 controls and 15 CAI participants during running with a heel strike pattern were collected through gait analysis. CAI participants performed running trials in three conditions: barefoot running, and running with high-dye and low-dye taping. Dependent variables were the range of motion (RoM) occurring at the different inter-segment angles as well as the cross-correlation coefficients between predetermined segments. Results: There were no significant RoM differences for barefoot running between CAI patients and controls. In taped conditions, the first two subphases only showed RoM changes at the midfoot without apparent RoM reduction compared to the barefoot CAI condition. In the last subphase there was limited RoM reduction at the mid- and rearfoot. Cross-correlation coefficients highlighted a tendency towards weaker joint coupling in the barefoot CAI condition compared to the controls. Joint coupling within the taped CAI conditions did not show optimization compared to the barefoot CAI condition. Conclusions: RoM was not significantly changed for barefoot running between CAI patients and controls. In taped conditions, there was no distinct tendency towards lower mean RoM values due to the mechanical restraints of taping. Joint coupling in CAI patients was not optimized by taping.


2019 ◽  
Vol 122 (1) ◽  
pp. 413-423 ◽  
Author(s):  
Davis A. Forman ◽  
Daniel Abdel-Malek ◽  
Christopher M. F. Bunce ◽  
Michael W. R. Holmes

Forearm rotation (supination/pronation) alters corticospinal excitability to the biceps brachii, but it is unclear whether corticospinal excitability is influenced by joint angle, muscle length, or both. Thus the purpose of this study was to separately examine elbow joint angle and muscle length on corticospinal excitability. Corticospinal excitability to the biceps and triceps brachii was measured using motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation. Spinal excitability was measured using cervicomedullary motor evoked potentials (CMEPs) elicited via transmastoid electrical stimulation. Elbow angles were manipulated with a fixed biceps brachii muscle length (and vice versa) across five unique postures: 1) forearm neutral, elbow flexion 90°; 2) forearm supinated, elbow flexion 90°; 3) forearm pronated, elbow flexion 90°; 4) forearm supinated, elbow flexion 78°; and 5) forearm pronated, elbow flexion 113°. A musculoskeletal model determined biceps brachii muscle length for postures 1–3, and elbow joint angles ( postures 4–5) were selected to maintain biceps length across forearm orientations. MEPs and CMEPs were elicited at rest and during an isometric contraction of 10% of maximal biceps muscle activity. At rest, MEP amplitudes to the biceps were largest during supination, which was independent of elbow joint angle. CMEP amplitudes were not different when the elbow was fixed at 90° but were largest in pronation when muscle length was controlled. During an isometric contraction, there were no significant differences across forearm postures for either MEP or CMEP amplitudes. These results highlight that elbow joint angle and biceps brachii muscle length can each independently influence spinal excitability. NEW & NOTEWORTHY Changes in upper limb posture can influence the responsiveness of the central nervous system to artificial stimulations. We established a novel approach integrating neurophysiology techniques with biomechanical modeling. Through this approach, the effects of elbow joint angle and biceps brachii muscle length on corticospinal and spinal excitability were assessed. We demonstrate that spinal excitability is uniquely influenced by joint angle and muscle length, and this highlights the importance of accounting for muscle length in neurophysiological studies.


2018 ◽  
Vol 61 ◽  
pp. 25-33 ◽  
Author(s):  
Francesco Di Nardo ◽  
Annachiara Strazza ◽  
Alessandro Mengarelli ◽  
Serena Ercolani ◽  
Nicole Morgoni ◽  
...  

1986 ◽  
Vol 60 (4) ◽  
pp. 1179-1185 ◽  
Author(s):  
T. Moritani ◽  
M. Muro ◽  
A. Nagata

Twelve male subjects were tested to determine the effects of motor unit (MU) recruitment and firing frequency on the surface electromyogram (EMG) frequency power spectra during sustained maximal voluntary contraction (MVC) and 50% MVC of the biceps brachii muscle. Both the intramuscular MU spikes and surface EMG were recorded simultaneously and analyzed by means of a computer-aided intramuscular spike amplitude-frequency histogram and frequency power spectral analysis, respectively. Results indicated that both mean power frequency (MPF) and amplitude (rmsEMG) of the surface EMG fell significantly (P less than 0.001) together with a progressive reduction in MU spike amplitude and firing frequency during sustained MVC. During 50% MVC there was a significant decline in MPF (P less than 0.001), but this decline was accompanied by a significant increase in rmsEMG (P less than 0.001) and a progressive MU recruitment as evidenced by an increased number of MUs with relatively large spike amplitude. Our data suggest that the surface EMG amplitude could better represent the underlying MU activity during muscle fatigue and the frequency powers spectral shift may or may not reflect changes in MU recruitment and rate-coding patterns.


Sign in / Sign up

Export Citation Format

Share Document