scholarly journals “Scanning mutagenesis” of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

2012 ◽  
Vol 3 ◽  
Author(s):  
Nagib Ahsan ◽  
Kirby N. Swatek ◽  
Jingfen Zhang ◽  
Ján A. Miernyk ◽  
Dong Xu ◽  
...  
1979 ◽  
Vol 181 (2) ◽  
pp. 419-426 ◽  
Author(s):  
P H Sugden ◽  
A L Kerbey ◽  
P J Randle ◽  
C A Waller ◽  
K B M Reid

1. When pig heart pyruvate dehydrogenase complex was phosphorylated to completion with [gamma-32P]ATP by its intrinsic kinase, three phosphorylation sites were observed. The amino acid sequences around these sites were: sequence 1, Tyr-Gly-Met-Gly-Thr-Ser(P)-Val-Glu-Arg; and sequence 2, Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser(P)-Tyr-Arg. 2. When phosphorylated to inactivation by repetitive additions of limiting quantities of [gamma-32P]ATP, phosphate was incorporated mainly (more than 90%) into Ser-5 of sequence 2. Phosphorylation of this site thus results in activation of pyruvate dehydrogenase. 3. If Ser-5 is phosphorylated with ATP and the enzyme then incubated with [gamma-32P]ATP, phosphorylation of the remaining sites occurred. Ser-12 of sequence 2 is phosphorylated about twice as rapidly as Ser-6 of sequence 1. 4. Incubation of pyruvate dehydrogenase with excess [gamma-32P]ATP with termination of phosphorylation at about 50% complete inactivation showed that Ser-5 of sequence 2 was phosphorylated most rapidly, but also that Ser-12 of sequence 2 was significantly (15% of total) phosphorylated. Ser-6 sequence 1 contained about 1% total P. 5. These results suggest that addition of limiting amounts of ATP produces primarily phosphorylation of Ser-5 of sequence 2 (inactivating site). This also occurs during incubation with excess ATP before complete inactivation occurs, but a greater occupancy of other sites also occurs during this treatment.


1980 ◽  
Vol 187 (3) ◽  
pp. 905-908 ◽  
Author(s):  
G Hale ◽  
R N Perham

Amino-acid sequences around two lipoic acid residues in the lipoate acetyltransferase component of the pyruvate dehydrogenase complex of Escherichia coli were investigated. A single amino acid sequence of 13 residues was found. A repeated amino acid sequence in the lipoate acetyltransferase chain might explain this result.


2001 ◽  
Vol 358 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Elena KOLOBOVA ◽  
Alina TUGANOVA ◽  
Igor BOULATNIKOV ◽  
Kirill M. POPOV

The enzymic activity of the mammalian pyruvate dehydrogenase complex is regulated by the phosphorylation of three serine residues (sites 1, 2 and 3) located on the E1 component of the complex. Here we report that the four isoenzymes of protein kinase responsible for the phosphorylation and inactivation of pyruvate dehydrogenase (PDK1, PDK2, PDK3 and PDK4) differ in their abilities to phosphorylate the enzyme. PDK1 can phosphorylate all three sites, whereas PDK2, PDK3 and PDK4 each phosphorylate only site 1 and site 2. Although PDK2 phosphorylates site 1 and 2, it incorporates less phosphate in site 2 than PDK3 or PDK4. As a result, the amount of phosphate incorporated by each isoenzyme decreases in the order PDK1>PDK3PDK4>PDK2. Significantly, binding of the coenzyme thiamin pyrophosphate to pyruvate dehydrogenase alters the rates and stoichiometries of phosphorylation of the individual sites. First, the rate of phosphorylation of site 1 by all isoenzymes of kinase is decreased. Secondly, thiamin pyrophosphate markedly decreases the amount of phosphate that PDK1 incorporates in sites 2 and 3 and that PDK2 incorporates in site 2. In contrast, the coenzyme does not significantly affect the total amount of phosphate incorporated in site 2 by PDK3 and PDK4, but instead decreases the rate of phosphorylation of this site. Furthermore, pyruvate dehydrogenase complex phosphorylated by the individual isoenzymes of kinase is reactivated at different rates by pyruvate dehydrogenase phosphatase. Both isoenzymes of phosphatase (PDP1 and PDP2) readily reactivate the complex phosphorylated by PDK2. When pyruvate dehydrogenase is phosphorylated by other isoenzymes, the rates of reactivation decrease in the order PDK4PDK3> PDK1. Taken together, results reported here strongly suggest that the major determinants of the activity state of pyruvate dehydrogenase in mammalian tissues include the phosphorylation site specificity of isoenzymes of kinase in addition to the absolute amounts of kinase and phosphatase protein expressed in mitochondria.


2006 ◽  
Vol 188 (4) ◽  
pp. 1341-1350 ◽  
Author(s):  
Mark E. Schreiner ◽  
Christian Riedel ◽  
Jiři Holátko ◽  
Miroslav Pátek ◽  
Bernhard J. Eikmanns

ABSTRACT Corynebacterium glutamicum recently has been shown to possess pyruvate:quinone oxidoreductase (PQO), catalyzing the oxidative decarboxylation of pyruvate to acetate and CO2 with a quinone as the electron acceptor. Here, we analyze the expression of the C. glutamicum pqo gene, investigate the relevance of the PQO enzyme for growth and amino acid production, and perform phylogenetic studies. Expression analyses revealed that transcription of pqo is initiated 45 bp upstream of the translational start site and that it is organized in an operon together with genes encoding a putative metal-activated pyridoxal enzyme and a putative activator protein. Inactivation of the chromosomal pqo gene led to the absence of PQO activity; however, growth and amino acid production were not affected under either condition tested. Introduction of plasmid-bound pqo into a pyruvate dehydrogenase complex-negative C. glutamicum strain partially relieved the growth phenotype of this mutant, indicating that high PQO activity can compensate for the function of the pyruvate dehydrogenase complex. To investigate the distribution of PQO enzymes in prokaryotes and to clarify the relationship between PQO, pyruvate oxidase (POX), and acetohydroxy acid synthase enzymes, we compiled and analyzed the phylogeny of respective proteins deposited in public databases. The analyses revealed a wide distribution of PQOs among prokaryotes, corroborated the hypothesis of a common ancestry of the three enzymes, and led us to propose that the POX enzymes of Lactobacillales were derived from a PQO.


2003 ◽  
Vol 284 (5) ◽  
pp. E855-E862 ◽  
Author(s):  
Mary C. Sugden ◽  
Mark J. Holness

The mitochondrial pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate, linking glycolysis to the tricarboxylic acid cycle and fatty acid (FA) synthesis. Knowledge of the mechanisms that regulate PDC activity is important, because PDC inactivation is crucial for glucose conservation when glucose is scarce, whereas adequate PDC activity is required to allow both ATP and FA production from glucose. The mechanisms that control mammalian PDC activity include its phosphorylation (inactivation) by a family of pyruvate dehydrogenase kinases (PDKs 1–4) and its dephosphorylation (activation, reactivation) by the pyruvate dehydrogenase phosphate phosphatases (PDPs 1 and 2). Isoform-specific differences in kinetic parameters, regulation, and phosphorylation site specificity of the PDKs introduce variations in the regulation of PDC activity in differing endocrine and metabolic states. In this review, we summarize recent significant advances in our knowledge of the mechanisms regulating PDC with emphasis on the PDKs, in particular PDK4, whose expression is linked with sustained changes in tissue lipid handling and which may represent an attractive target for pharmacological interventions aimed at modulating whole body glucose, lipid, and lactate homeostasis in disease states.


Sign in / Sign up

Export Citation Format

Share Document