kinetic and thermodynamic analysis
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 27)

H-INDEX

29
(FIVE YEARS 4)

2022 ◽  
pp. 277-300
Author(s):  
Siaw Weii Hii ◽  
Bridgid Lai Fui Chin ◽  
Fanthagiro Rossi Stuard Anak Majing ◽  
Huei Yeong Lim ◽  
Adrian Chun Minh Loy ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6822
Author(s):  
Josselyne A. Villarroel ◽  
Alex Palma-Cando ◽  
Alfredo Viloria ◽  
Marvin Ricaurte

One of the alternatives to reduce CO2 emissions from industrial sources (mainly the oil and gas industry) is CO2 capture. Absorption with chemical solvents (alkanolamines in aqueous solutions) is the most widely used conventional technology for CO2 capture. Despite the competitive advantages of chemical solvents, the technological challenge in improving the absorption process is to apply alternative solvents, reducing energy demand and increasing the CO2 captured per unit of solvent mass. This work presents an experimental study related to the kinetic and thermodynamic analysis of high-pressure CO2 capture using ethylenediamine (EDA) as a chemical solvent. EDA has two amine groups that can increase the CO2 capture capacity per unit of solvent. A non-stirred experimental setup was installed and commissioned for CO2 capture testing. Tests of the solubility of CO2 in water were carried out to validate the experimental setup. CO2 capture testing was accomplished using EDA in aqueous solutions (0, 5, 10, and 20 wt.% in amine). Finally, a kinetic model involving two steps was proposed, including a rapid absorption step and a slow diffusion step. EDA accelerated the CO2 capture performance. Sudden temperature increases were observed during the initial minutes. The CO2 capture was triggered after the absorption of a minimal amount of CO2 (~10 mmol) into the liquid solutions, and could correspond to the “lean amine acid gas loading” in a typical sweetening process using alkanolamines. At equilibrium, there was a linear relationship between the CO2 loading and the EDA concentration. The CO2 capture behavior obtained adapts accurately (AAD < 1%) to the kinetic mechanism.


2021 ◽  
Vol 13 (17) ◽  
pp. 9642
Author(s):  
Aleksandra Petrovič ◽  
Sabina Vohl ◽  
Tjaša Cenčič Predikaka ◽  
Robert Bedoić ◽  
Marjana Simonič ◽  
...  

This study investigates the pyrolysis behavior and reaction kinetics of two different types of solid digestates from: (i) sewage sludge and (ii) a mixture of sewage sludge and lignocellulosic biomass—Typha latifolia plant. Thermogravimetric data in the temperature range 25–800 °C were analyzed using Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose kinetic methods, and the thermodynamic parameters (ΔH, ΔG, and ΔS) were also determined. Biochars were characterized using different chemical methods (FTIR, SEM–EDS, XRD, heavy metal, and nutrient analysis) and tested as soil enhancers using a germination test. Finally, their potential for biosorption of NH4+, PO43−, Cu2+, and Cd2+ ions was studied. Kinetic and thermodynamic parameters revealed a complex degradation mechanism of digestates, as they showed higher activation energies than undigested materials. Values for sewage sludge digestate were between 57 and 351 kJ/mol, and for digestate composed of sewage sludge and T. latifolia between 62 and 401 kJ/mol. Characterizations of biochars revealed high nutrient content and promising potential for further use. The advantage of biochar obtained from a digestate mixture of sewage sludge and lignocellulosic biomass is the lower content of heavy metals. Biosorption tests showed low biosorption capacity of digestate-derived biochars and their modifications for NH4+ and PO43− ions, but high biosorption capacity for Cu2+ and Cd2+ ions. Modification with KOH was more efficient than modification with HCl. The digestate-derived biochars exhibited excellent performance in germination tests, especially at concentrations between 6 and 10 wt.%.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3582
Author(s):  
Małgorzata Starek ◽  
Monika Dąbrowska ◽  
Joanna Chebda ◽  
Dominik Żyro ◽  
Justyn Ochocki

Metronidazole is a drug widely used in the prevention and treatment of bacterial infections. Due to its possibility of the formation of stable metal complexes, it was decided to broaden its activity spectrum by introducing the silver(I) coordination compounds i.e., [Ag(MTZ)2NO3] and [(Ag(MTZ)2)2]SO4, which have significant antibacterial properties. The paper presents a description of a new qualitative and quantitative analysis of metronidazole in bulk and possible pharmaceutical preparations by thin-layer chromatography with densitometric detection. Optimal separation conditions were selected, and the analytical procedure was validated according to the ICH guidelines. The obtained data indicate that the method is sufficiently sensitive, precise, and accurate. The stability of the metronidazole solutions obtained from tablets, pure metronidazole, and its silver(I) complexes was tested. The research was carried out in various environments, at different temperatures, in H2O2 solution, and during exposure to radiation (UV, sunlight). The greatest degradation was found in the alkaline environment and at higher temperatures. The silver(I) complexes exhibited relatively high stability under analyzed conditions that are higher than standard metronidazole solutions and tablets. The observations were confirmed by the kinetic and thermodynamic analysis. The described studies of new metronidazole silver(I) complexes increase the potential for their application in infections both in humans and animals.


RSC Advances ◽  
2021 ◽  
Vol 11 (36) ◽  
pp. 22365-22375
Author(s):  
Guangbing Liang ◽  
Yanhong Li ◽  
Chun Yang ◽  
Xun Hu ◽  
Qingyin Li ◽  
...  

In this work, industrial biomass power plant ash was used to synthesize the ZSM-5 zeolites for the first time with the original intention to turn value-added material into wealth, and then committed to adsorption performance testing.


Sign in / Sign up

Export Citation Format

Share Document