scholarly journals Universal Stress Protein Exhibits a Redox-Dependent Chaperone Function in Arabidopsis and Enhances Plant Tolerance to Heat Shock and Oxidative Stress

2015 ◽  
Vol 6 ◽  
Author(s):  
Young Jun Jung ◽  
Sarah Mae Boyles Melencion ◽  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Cresilda Vergara Alinapon ◽  
...  
2010 ◽  
Vol 46 (8) ◽  
pp. 781-788 ◽  
Author(s):  
V. Yu. Kotova ◽  
I. V. Manukhov ◽  
G. B. Zavilgelskii

1995 ◽  
Vol 309 (2) ◽  
pp. 453-459 ◽  
Author(s):  
L Tacchini ◽  
G Pogliaghi ◽  
L Radice ◽  
E Anzon ◽  
A Bernelli-Zazzera

Post-ischaemic reperfusion increases the level of the major heat-shock (stress) protein hsp 70 and of its mRNA by transcriptional mechanisms, and activates the binding of the heat-shock factor HSF to the consensus sequence HSE. In common with CoCl2 treatment, post-ischaemic reperfusion increases the level of haem oxygenase mRNA, an indicator of oxidative stress, but CoCl2 does not seem to induce the expression of the hsp 70 gene [Tacchini, Schiaffonati, Pappalardo, Gatti and Bernelli-Zazzera (1993) Lab. Invest. 68, 465-471]. Starting from these observations, we have now studied the expression of two genes of the hsp 70 family and of other possibly related genes under conditions of oxidative stress. Three different chemicals, which cause oxidative stress by various mechanisms and induce haem oxygenase, enhance the expression of the cognate hsc 73 gene, but do not activate the inducible hsp 70 gene. Expression of the other genes that have been studied seems to vary in intensity and/or time course, in relation to the particular mechanism of action of any single agent. The pattern of induction of the early-immediate response genes c-fos and c-jun observed during oxidative stress differs from that found in post-ischaemic reperfused livers. Oxidative-stress-inducing agents do not promote the binding of HSF to its consensus sequence HSE, such as occurs in heat-shock and post-ischaemic reperfusion, and fail to activate AP-1 (activator protein 1). With the possible exception of Phorone, the oxidative stress chemically induced in rat liver activates NFkB (nuclear factor kB) and AP-2 (activator protein 2) transcription factors.


2019 ◽  
Vol 709 ◽  
pp. 134368 ◽  
Author(s):  
Jonathan Dowell ◽  
Benjamin A. Elser ◽  
Rachel E. Schroeder ◽  
Hanna E. Stevens

1998 ◽  
Vol 9 (6) ◽  
pp. 1339-1349 ◽  
Author(s):  
Kazuhiro Shiozaki ◽  
Mitsue Shiozaki ◽  
Paul Russell

Fission yeast Spc1/StyI MAPK is activated by many environmental insults including high osmolarity, oxidative stress, and heat shock. Spc1/StyI is activated by Wis1, a MAPK kinase (MEK), which is itself activated by Wik1/Wak1/Wis4, a MEK kinase (MEKK). Spc1/StyI is inactivated by the tyrosine phosphatases Pyp1 and Pyp2. Inhibition of Pyp1 was recently reported to play a crucial role in the oxidative stress and heat shock responses. These conclusions were based on three findings: 1) osmotic, oxidative, and heat stresses activate Spc1/StyI in wis4 cells; 2) oxidative stress and heat shock activate Spc1/StyI in cells that express Wis1AA, in which MEKK consensus phosphorylation sites were replaced with alanine; and 3) Spc1/StyI is maximally activated in Δpyp1 cells. Contrary to these findings, we report: 1) Spc1/StyI activation by osmotic stress is greatly reduced in wis4 cells; 2)wis1-AA and Δwis1 cells have identical phenotypes; and 3) all forms of stress activate Spc1/StyI inΔpyp1 cells. We also report that heat shock, but not osmotic or oxidative stress, activate Spc1 in wis1-DDcells, which express Wis1 protein that has the MEKK consensus phosphorylation sites replaced with aspartic acid. Thus osmotic and oxidative stress activate Spc1/StyI by a MEKK-dependent process, whereas heat shock activates Spc1/StyI by a novel mechanism that does not require MEKK activation or Pyp1 inhibition.


1987 ◽  
Vol 33 (2) ◽  
pp. 162-168 ◽  
Author(s):  
M. Kapoor ◽  
J. Lewis

Neurospora crassa cells, grown at 28 °C for 14 h and heat shocked at 48 °C for 45 min, showed the synthesis of 11 heat-shock proteins (nHSPs) in one-dimensional electrophoretic profiles. Treatment with sodium arsenite induced the synthesis of two heat-shock proteins, nHSP70 and nHSP80, and a third, arsenite-specific protein, not induced by hyperthermia. Exposure to 0.5 or 1.0 mM H2O2 led to the induction of two of the heat-inducible nHSP70 family polypeptides. Sodium selenite, used in concert with H2O2, and arsenite were observed to modulate that heat-shock response. In addition, H2O2, menadione, and the glutathione depleters diamide and diethyl maleate promoted the synthesis of another protein, designated oxidative stress-responsive protein (OSP). A DNA-binding protein, specific for Neurospora DNA, was also demonstrated in extracts of heat-shocked cells.


2005 ◽  
Vol 30 (4) ◽  
pp. 499-505 ◽  
Author(s):  
Nand K. Sah ◽  
Shyam Nandan P. Singh ◽  
Sudhir Sahdev ◽  
Sharmishta Banerji ◽  
Vidyanath Jha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document