scholarly journals Forward Genetics Approach Reveals a Mutation in bHLH Transcription Factor-Encoding Gene as the Best Candidate for the Root Hairless Phenotype in Barley

2018 ◽  
Vol 9 ◽  
Author(s):  
Patrycja Gajewska ◽  
Agnieszka Janiak ◽  
Miroslaw Kwasniewski ◽  
Piotr Kędziorski ◽  
Iwona Szarejko
2021 ◽  
Author(s):  
Ning Zhang ◽  
Chloe Hecht ◽  
Xuepeng Sun ◽  
Zhangjun Fei ◽  
Gregory B Martin

Basic helix-loop-helix (bHLH) transcription factors constitute a superfamily in eukaryotes but their roles in plant immunity remain largely uncharacterized. We found that the transcript abundance in tomato leaves of one bHLH transcription factor-encoding gene, Nrd1 (negative regulator of resistance to DC3000 1), was significantly increased after treatment with the immunity-inducing flgII-28 peptide. Plants carrying a loss-of-function mutation in Nrd1 (Δnrd1) showed enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 although early pattern-triggered immunity responses such as generation of reactive oxygen species and activation of mitogen-activated protein kinases after treatment with flagellin-derived flg22 and flgII-28 peptides were unaltered compared to wild-type plants. An RNA-Seq analysis identified a gene, Agp1, whose expression is strongly suppressed in an Nrd1-dependent manner. Agp1 encodes an arabinogalactan protein and overexpression of the Agp1 gene in Nicotiana benthamiana led to ~10-fold less Pst growth compared to the control. These results suggest that the Nrd1 protein promotes tomato susceptibility to Pst by suppressing the defense gene Agp1. RNA-Seq also revealed that loss of Nrd1 function has no effect on the transcript abundance of immunity-associated genes including Bti9, Core, Fls2, Fls3 and Wak1 upon Pst inoculation, suggesting that the enhanced immunity observed in the Δnrd1 mutants is due to the activation of key PRR signaling components as well as loss of Nrd1-regulated suppression of Agp1.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaolong Hao ◽  
Chenhong Xie ◽  
Qingyan Ruan ◽  
Xichen Zhang ◽  
Chao Wu ◽  
...  

AbstractThe limited bioavailability of plant-derived natural products with anticancer activity poses major challenges to the pharmaceutical industry. An example of this is camptothecin, a monoterpene indole alkaloid with potent anticancer activity that is extracted at very low concentrations from woody plants. Recently, camptothecin biosynthesis has been shown to become biotechnologically amenable in hairy-root systems of the natural producer Ophiorrhiza pumila. Here, time-course expression and metabolite analyses were performed to identify novel transcriptional regulators of camptothecin biosynthesis in O. pumila. It is shown here that camptothecin production increased over cultivation time and that the expression pattern of the WRKY transcription factor encoding gene OpWRKY2 is closely correlated with camptothecin accumulation. Overexpression of OpWRKY2 led to a more than three-fold increase in camptothecin levels. Accordingly, silencing of OpWRKY2 correlated with decreased camptothecin levels in the plant. Further detailed molecular characterization by electrophoretic mobility shift, yeast one-hybrid and dual-luciferase assays showed that OpWRKY2 directly binds and activates the central camptothecin pathway gene OpTDC. Taken together, the results of this study demonstrate that OpWRKY2 acts as a direct positive regulator of camptothecin biosynthesis. As such, a feasible strategy for the over-accumulation of camptothecin in a biotechnologically amenable system is presented.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kaijie Zheng ◽  
Xutong Wang ◽  
Yating Wang ◽  
Shucai Wang

Abstract Background Trichome initiation in Arabidopsis is regulated by a MYB-bHLH-WD40 (MBW) transcriptional activator complex formed by the R2R3 MYB transcription factor GLABRA1 (GL1), MYB23 or MYB82, the bHLH transcription factor GLABRA3 (GL3), ENHANCER OF GLABRA3 (EGL3) or TRANSPARENT TESTA8 (TT8), and the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1). However, the functions of the rice homologs of the MBW complex proteins remained uncharacterized. Results Based on amino acid sequence identity and similarity, and protein interaction prediction, we identified OsGL1s, OsGL3s and OsTTG1s as rice homologs of the MBW complex proteins. By using protoplast transfection, we show that OsGL1D, OsGL1E, OsGL3B and OsTTG1A were predominantly localized in the nucleus, OsGL3B functions as a transcriptional activator and is able to interact with GL1 and TTG1. By using yeast two-hybrid and protoplast transfection assays, we show that OsGL3B is able to interact with OsGL1E and OsTTG1A, and OsGL1E and OsTTG1A are also able to interact with GL3. On the other hand, we found that OsGL1D functions as a transcription activator, and it can interact with GL3 but not OsGL3B. Furthermore, our results show that expression of OsTTG1A in the ttg1 mutant restored the phenotypes including alternations in trichome and root hair formation, seed color, mucilage production and anthocyanin biosynthesis, indicating that OsTTG1A and TTG1 may have similar functions. Conclusion These results suggest that the rice homologs of the Arabidopsis MBW complex proteins are able to form MBW complexes, but may have conserved and non-conserved functions.


2013 ◽  
Vol 54 (3) ◽  
pp. 398-405 ◽  
Author(s):  
Kyoko Ohashi-Ito ◽  
Manami Matsukawa ◽  
Hiroo Fukuda

Development ◽  
2016 ◽  
Vol 143 (4) ◽  
pp. 682-690 ◽  
Author(s):  
Nidhi Sharma ◽  
Ruijiao Xin ◽  
Dong-Hwan Kim ◽  
Sibum Sung ◽  
Theo Lange ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document