scholarly journals Histological Features of the Olive Seed and Presence of 7S-Type Seed Storage Proteins as Hallmarks of the Olive Fruit Development

2018 ◽  
Vol 9 ◽  
Author(s):  
Adoración Zafra ◽  
Mohammed M’rani-Alaoui ◽  
Elena Lima ◽  
Jose Carlos Jimenez-Lopez ◽  
Juan de Dios Alché
2007 ◽  
Vol 29 (5) ◽  
pp. 439-444 ◽  
Author(s):  
Wei Wang ◽  
Juan de Dios Alché ◽  
Marìa Isabel Rodríguez-García

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Jose C. Jimenez-Lopez ◽  
Adoración Zafra ◽  
Lucía Palanco ◽  
José Fernando Florido ◽  
Juan de Dios Alché

Olive seeds, which are a raw material of interest, have been reported to contain 11S seed storage proteins (SSPs). However, the presence of SSPs such as 7S vicilins has not been studied. In this study, following a search in the olive seed transcriptome, 58 sequences corresponding to 7S vicilins were retrieved. A partial sequence was amplified by PCR from olive seed cDNA and subjected to phylogenetic analysis with other sequences. Structural analysis showed that olive 7S vicilin contains 9α-helixes and 22β-sheets. Additionally, 3D structural analysis displayed good superimposition with vicilin models generated fromPistaciaandSesamum. In order to assess potential allergenicity, T and B epitopes present in these proteins were identified by bioinformatic approaches. Different motifs were observed among the species, as well as some species-specific motifs. Finally, expression analysis of vicilins was carried out in protein extracts obtained from seeds of different species, including the olive. Noticeable bands were observed for all species in the 15–75 kDa MW interval, which were compatible with vicilins. The reactivity of the extracts to sera from patients allergic to nuts was also analysed. The findings with regard to the potential use of olive seed as food are discussed.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 687
Author(s):  
Chan Seop Ko ◽  
Jin-Baek Kim ◽  
Min Jeong Hong ◽  
Yong Weon Seo

High-temperature stress during the grain filling stage has a deleterious effect on grain yield and end-use quality. Plants undergo various transcriptional events of protein complexity as defensive responses to various stressors. The “Keumgang” wheat cultivar was subjected to high-temperature stress for 6 and 10 days beginning 9 days after anthesis, then two-dimensional gel electrophoresis (2DE) and peptide analyses were performed. Spots showing decreased contents in stressed plants were shown to have strong similarities with a high-molecular glutenin gene, TraesCS1D02G317301 (TaHMW1D). QRT-PCR results confirmed that TaHMW1D was expressed in its full form and in the form of four different transcript variants. These events always occurred between repetitive regions at specific deletion sites (5′-CAA (Glutamine) GG/TG (Glycine) or (Valine)-3′, 5′-GGG (Glycine) CAA (Glutamine) -3′) in an exonic region. Heat stress led to a significant increase in the expression of the transcript variants. This was most evident in the distal parts of the spike. Considering the importance of high-molecular weight glutenin subunits of seed storage proteins, stressed plants might choose shorter polypeptides while retaining glutenin function, thus maintaining the expression of glutenin motifs and conserved sites.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 107
Author(s):  
Mahmudur Rahman ◽  
Lei Liu ◽  
Bronwyn J. Barkla

Rapeseed oil-extracted expeller cake mostly contains protein. Various approaches have been used to isolate, detect and measure proteins in rapeseeds, with a particular focus on seed storage proteins (SSPs). To maximize the protein yield and minimize hazardous chemical use, isolation costs and the loss of seed material, optimization of the extraction method is pivotal. For some studies, it is also necessary to minimize or avoid seed-to-seed cross-contamination for phenotyping and single-tissue type analysis to know the exact amount of any bioactive component in a single seed, rather than a mixture of multiple seeds. However, a simple and robust method for single rapeseed seed protein extraction (SRPE) is unavailable. To establish a strategy for optimizing SRPE for downstream gel-based protein analysis, yielding the highest amount of SSPs in the most economical and rapid way, a variety of different approaches were tested, including variations to the seed pulverization steps, changes to the compositions of solvents and reagents and adjustments to the protein recovery steps. Following SRPE, 1D-SDS-PAGE was used to assess the quality and amount of proteins extracted. A standardized SRPE procedure was developed and then tested for yield and reproducibility. The highest protein yield and quality were obtained using a ball grinder with stainless steel beads in Safe-Lock microcentrifuge tubes with methanol as the solvent, providing a highly efficient, economic and effective method. The usefulness of this SRPE was validated by applying the procedure to extract protein from different Brassica oilseeds and for screening an ethyl methane sulfonate (EMS) mutant population of Brassica rapa R-0-18. The outcomes provide useful methodology for identifying and characterizing the SSPs in the SRPE.


1994 ◽  
Vol 45 (6) ◽  
pp. 699-708 ◽  
Author(s):  
Joan E. Krochko ◽  
David J. Bantroch ◽  
John S. Greenwood ◽  
J. Derek Bewley

Genome ◽  
2002 ◽  
Vol 45 (4) ◽  
pp. 661-669 ◽  
Author(s):  
Ali Masoudi-Nejad ◽  
Shuhei Nasuda ◽  
Akira Kawabe ◽  
Takashi R Endo

Gliadins are the most abundant component of the seed storage proteins in cereals and, in combination with glutenins, are important for the bread-making quality of wheat. They are divided into four subfamilies, the α-, β-, γ-, and ω-gliadins, depending on their electrophoresis pattern, chromosomal location, and DNA and protein structures. Using a PCR-based strategy we isolated and sequenced an ω-gliadin sequence. We also determined the chromosomal subarm location of this sequence using wheat aneuploids and deletion lines. The gene is 1858 bp long and contains a coding sequence 1248 bp in length. Like all other gliadin gene families characterized in cereals, the ω-gliadin gene described here had characteristic features including two repeated sequences 300 bp upstream of the start codon. At the DNA level, the gene had a high degree of similarity to the ω-secalin and C-hordein genes of rye and barley, but exhibited much less homology to the α- and β-gliadin gene families. In terms of the deduced amino acid sequence, this gene has about 80 and 70% similarity to the ω-secalin and C-hordein genes, respectively, and possesses all the features reported for other gliadin gene families. The ω-gliadin gene has about 30 repeats of the core consensus sequences PQQPX and XQQPQQX, twice as many as other gliadin gene families. Southern blotting and PCR analysis with aneuploid and deletion lines for the short arm of chromosome 1A showed that the ω-gliadin was located on the distal 25% of the short arm of chromosome 1A. By comparison of PCR and A-PAGE profiles for deletion stocks, its genomic location must be at a different locus from gli-A1a in 'Chinese Spring'.Key words: glutenin, omega gliadin, storage protein, Triticum aestivum, secalin.


Sign in / Sign up

Export Citation Format

Share Document