scholarly journals Impacts of Arctic Shrubs on Root Traits and Belowground Nutrient Cycles Across a Northern Alaskan Climate Gradient

2020 ◽  
Vol 11 ◽  
Author(s):  
Weile Chen ◽  
Ken D. Tape ◽  
Eugénie S. Euskirchen ◽  
Shuang Liang ◽  
Adriano Matos ◽  
...  

Deciduous shrubs are expanding across the graminoid-dominated nutrient-poor arctic tundra. Absorptive root traits of shrubs are key determinants of nutrient acquisition strategy from tundra soils, but the variations of shrub root traits within and among common shrub genera across the arctic climatic gradient are not well resolved. Consequently, the impacts of arctic shrub expansion on belowground nutrient cycling remain largely unclear. Here, we collected roots from 170 plots of three commonly distributed shrub genera (Alnus, Betula, and Salix) and a widespread sedge (Eriophorum vaginatum) along a climatic gradient in northern Alaska. Absorptive root traits that are relevant to the strategy of plant nutrient acquisition were determined. The influence of aboveground dominant vegetation cover on the standing root biomass, root productivity, vertical rooting profile, as well as the soil nitrogen (N) pool in the active soil layer was examined. We found consistent root trait variation among arctic plant genera along the sampling transect. Alnus and Betula had relatively thicker and less branched, but more frequently ectomycorrhizal colonized absorptive roots than Salix, suggesting complementarity between root efficiency and ectomycorrhizal dependence among the co-existing shrubs. Shrub-dominated plots tended to have more productive absorptive roots than sedge-dominated plots. At the northern sites, deep absorptive roots (>20 cm depth) were more frequent in birch-dominated plots. We also found shrub roots extensively proliferated into the adjacent sedge-dominated plots. The soil N pool in the active layer generally decreased from south to north but did not vary among plots dominated by different shrub or sedge genera. Our results reveal diverse nutrient acquisition strategies and belowground impacts among different arctic shrubs, suggesting that further identifying the specific shrub genera in the tundra landscape will ultimately provide better predictions of belowground dynamics across the changing arctic.

2021 ◽  
Vol 5 ◽  
Author(s):  
Marney E. Isaac ◽  
Victoria Nimmo ◽  
Amélie C. M. Gaudin ◽  
Andrea Leptin ◽  
Jennifer Elise Schmidt ◽  
...  

Selecting crops that express certain reproductive, leaf, and root traits has formed detectable, albeit diverse, crop domestication syndromes. However, scientific and informal on-farm research has primarily focused on understanding and managing linkages between only certain domestication traits and yield. There is strong evidence suggesting that functional traits can be used to hypothesize and detect trade-offs, constraints, and synergies among crop yield and other aspects of crop biology and agroecosystem function. Comparisons in the functional traits of crops vs. wild plants has emerged as a critical avenue that has helped inform a better understanding of how plant domestication has reshaped relationships among yield and traits. For instance, recent research has shown domestication has led important economic crops to express extreme functional trait values among plants globally, with potentially major implications for yield stability, nutrient acquisition strategies, and the success of ecological nutrient management. Here, we present an evidence synthesis of domestication effects on crop root functional traits, and their hypothesized impact on nutrient acquisition strategies in organic and low input agroecosystems. Drawing on global trait databases and published datasets, we show detectable shifts in root trait strategies with domestication. Relationships between domestication syndromes in root traits and nutrient acquisition strategies in low input systems underscores the need for a shift in breeding paradigms for organic agriculture. This is increasingly important given efforts to achieve Sustainable Development Goal (SDG) targets of Zero Hunger via resilient agriculture practices such as ecological nutrient management and maintenance of genetic diversity.


2014 ◽  
Vol 38 (1) ◽  
pp. 50-60 ◽  
Author(s):  
FRANÇOIS P. TESTE ◽  
ERIK J. VENEKLAAS ◽  
KINGSLEY W. DIXON ◽  
HANS LAMBERS

1993 ◽  
Vol 67 (S35) ◽  
pp. 1-35 ◽  
Author(s):  
Louie Marincovich

The marine molluscan fauna of the Prince Creek Formation near Ocean Point, northern Alaska, is of Danian age. It is the only diverse and abundant Danian molluscan fauna known from the Arctic Ocean realm, and is the first evidence for an indigenous Paleocene shallow-water biota within a discrete Arctic Ocean Basin faunal province.A high percentage of endemic species, and two endemic genera, emphasize the degree to which the Arctic Ocean was geographically isolated from the world ocean during the earliest Tertiary. Many of the well-preserved Ocean Point mollusks, however, also occur in Danian faunas of the North American Western Interior, the Canadian Arctic Islands, Svalbard, and northwestern Europe, and are the basis for relating this Arctic Ocean fauna to that of the Danian world ocean.The Arctic Ocean was a Danian refugium for some genera that became extinct elsewhere during the Jurassic and Cretaceous. At the same time, this nearly landlocked ocean fostered the evolution of new taxa that later in the Paleogene migrated into the world ocean by way of the northeastern Atlantic. The first Cenozoic occurrences are reported for the bivalves Integricardium (Integricardium), Oxytoma (Hypoxytoma), Placunopsis, Tancredia (Tancredia), and Tellinimera, and the oldest Cenozoic records given for the bivalves Gari (Garum), Neilo, and Yoldia (Cnesterium). Among the 25 species in the molluscan fauna are four new gastropod species, Amauropsis fetteri, Ellipsoscapha sohli, Mathilda (Fimbriatella) amundseni, and Polinices (Euspira) repenningi, two new bivalve genera, Arcticlam and Mytilon, and 15 new bivalve species, Arcticlam nanseni, Corbula (Caryocorbula) betsyae, Crenella kannoi, Cyrtodaria katieae, Gari (Garum) brouwersae, Integricardium (Integricardium) keenae, Mytilon theresae, Neilo gryci, Nucula (Nucula) micheleae, Nuculana (Jupiteria) moriyai, Oxytoma (Hypoxytoma) hargrovei, Placunopsis rothi, Tancredia (Tancredia) slavichi, Tellinimera kauffmani, and Yoldia (Cnesterium) gladenkovi.


Author(s):  
John R. Bockstoce

This chapter focuses on the development and advance of the arctic fur trade to the year 1914: the decline of the shore whaling industry and the rise of the market for white fox furs; the beginning of the dispersal of trapping families along the coast; the importance of the Cape Smythe Whaling and Trading Company at Barrow, Alaska; and the activities of H. Liebes and Company, furriers of San Francisco.


2020 ◽  
Vol 10 ◽  
Author(s):  
Vyacheslav Polyakov ◽  
Evgeny Abakumov

The Arctic ecosystem has a huge reservoir of soil organic carbon stored in permafrost-affected soils and biosediments. During the short vegetation season, humification and mineralization processes in the active soil layer result in the formation of specific soil organic substances – humic substances. Humic acids are high molecular, specific, thermodynamically stable macromolecules. The study was conducted in the Lena River Delta, the largest river delta located in the Arctic. Cryosol-type soils on alluvial deposits of the river form an area of about 45 thousand km<sup>2</sup> under permafrost conditions. The vegetation cover is represented by moss-lichen communities with the presence of <em>Salix glauca</em> in the flooded areas, as well as <em>Betula nana</em> in the areas not subject to flooding. The paper presents the elemental and molecular composition of humic acids isolated from soils, integral indicators of humification (stabilization) of organic matter in the soils of the Lena River Delta. The study was conducted using the <sup>13</sup>C (CP/MAS) NMR spectroscopy method. In the work, it was revealed that up to 33% of aromatic and up to 15% COOR fragments are accumulated in humic acids. The AR/AL ratio ranged from 0.69 to 0.89. The studied soils are variants of modern soil formation (not subjected to alluvial processes) and soil-like bodies that melted from the IC of the river delta. A relatively high degree of condensation of humic acid macromolecules in comparison with other polar regions of the Arctic and Antarctic was noted.


2016 ◽  
Author(s):  
Lei Cai ◽  
Vladimir A. Alexeev ◽  
Christopher D. Arp ◽  
Benjamin M. Jones ◽  
Anna Liljedahl ◽  
...  

Abstract. Climatic changes are most pronounced in northern high latitude regions. Yet, there is a paucity of observational data, both spatially and temporally, such that regional-scale dynamics are not fully captured, limiting our ability to make reliable projections. In this study, a group of dynamical downscaling products were created for the period 1950 to 2100 to better understand climate change and its impacts on hydrology, permafrost, and ecosystems at a resolution suitable for northern Alaska. An ERA-interim reanalysis dataset and the Community Earth System Model (CESM) served as the forcing mechanisms in this dynamical downscaling framework, and the Weather Research &amp; Forecast (WRF) model, embedded with an optimization for the Arctic (Polar WRF), served as the Regional Climate Model (RCM). This downscaled output consists of multiple climatic variables (precipitation, temperature, wind speed, dew point temperature, and surface air pressure) for a 10 km grid spacing at three-hour intervals. The modeling products were evaluated and calibrated using a bias-correction approach. The ERA-interim forced WRF (ERA-WRF) produced reasonable climatic variables as a result, yielding a more closely correlated temperature field than precipitation field when long-term monthly climatology was compared with its forcing and observational data. A linear scaling method then further corrected the bias, based on ERA-interim monthly climatology, and bias-corrected ERA-WRF fields were applied as a reference for calibration of both the historical and the projected CESM forced WRF (CESM-WRF) products. Biases, such as, a cold temperature bias during summer and a warm temperature bias during winter as well as a wet bias for annual precipitation that CESM holds over northern Alaska persisted in CESM-WRF runs. The linear scaling of CESM-WRF eventually produced high-resolution downscaling products for the Alaskan North Slope for hydrological and ecological research, together with the calibrated ERA-WRF run, and its capability extends far beyond that. Other climatic research has been proposed, including exploration of historical and projected climatic extreme events and their possible connections to low-frequency sea-atmospheric oscillations, as well as near-surface permafrost degradation and ice regime shifts of lakes. These dynamically downscaled, bias corrected climatic datasets provide improved spatial and temporal resolution data necessary for ongoing modeling efforts in northern Alaska focused on reconstructing and projecting hydrologic changes, ecosystem processes and responses, and permafrost thermal regimes. The dynamical downscaling methods presented in this study can also be used to create more suitable model input datasets for other sub-regions of the Arctic. Supplementary data are available at https://doi.org/10.1594/PANGAEA.863625.


2008 ◽  
Vol 23 (2) ◽  
pp. 95-103 ◽  
Author(s):  
H LAMBERS ◽  
J RAVEN ◽  
G SHAVER ◽  
S SMITH

Sign in / Sign up

Export Citation Format

Share Document