scholarly journals Arbuscular Mycorrhizal Fungi Regulate Polyamine Homeostasis in Roots of Trifoliate Orange for Improved Adaptation to Soil Moisture Deficit Stress

2021 ◽  
Vol 11 ◽  
Author(s):  
Ying-Ning Zou ◽  
Fei Zhang ◽  
Anoop K. Srivastava ◽  
Qiang-Sheng Wu ◽  
Kamil Kuča

Soil arbuscular mycorrhizal fungi (AMF) enhance the tolerance of plants against soil moisture deficit stress (SMDS), but the underlying mechanisms are still not fully understood. Polyamines (PAs) as low-molecular-weight, aliphatic polycations have strong roles in abiotic stress tolerance of plants. We aimed to investigate the effect of AMF (Funneliformis mosseae) inoculation on PAs, PA precursors, activities of PA synthases and degrading enzymes, and concentration of reactive oxygen species in the roots of trifoliate orange (Poncirus trifoliata) subjected to 15 days of SMDS. Leaf water potential and total chlorophyll levels were comparatively higher in AMF-inoculated than in non-AMF-treated plants exposed to SMDS. Mycorrhizal plants recorded a significantly higher concentration of precursors of PA synthesis such as L-ornithine, agmatine, and S-adenosyl methionine, besides higher putrescine and cadaverine and lower spermidine during the 15 days of SMDS. AMF colonization raised the PA synthase (arginine decarboxylase, ornithine decarboxylase, spermidine synthase, and spermine synthase) activities and PA-degrading enzymes (copper-containing diamine oxidase and FAD-containing polyamine oxidase) in response to SMDS. However, mycorrhizal plants showed a relatively lower degree of membrane lipid peroxidation, superoxide anion free radical, and hydrogen peroxide than non-mycorrhizal plants, whereas the difference between them increased linearly up to 15 days of SMDS. Our study concluded that AMF regulated PA homeostasis in roots of trifoliate orange to tolerate SMDS.

Biologia ◽  
2006 ◽  
Vol 61 (19) ◽  
Author(s):  
Nasser Aliasgharzad ◽  
Mohammad Neyshabouri ◽  
Ghobad Salimi

AbstractMycorrhizal symbiosis can potentially improve water uptake by plants. In a controlled pot culture experiment, soybean plants were inoculated with two species of arbuscular mycorrhizal fungi, Glomus mosseae (Gm) or Glomus etunicatum (Ge), or left non-inoculated (NM) as control in a sterile soil. Four levels of soil moisture (Field capacity, 0.85 FC, 0.7 FC, 0.6 FC) in the presence or absence of the Bradyrhizobium japonicum, were applied to the pots. Relative water content (RWC) of leaf at both plant growth stages (flowering and seed maturation) decreased with the dryness of soil; RWC was higher in all mycorrhizal than non-mycorrhizal plants irrespective of soil moisture level. At the lowest moisture level (0.6 FC) Ge was more efficient than Gm in maintaining high leaf RWC. Leaf water potential (LWP) had the same trend as RWC in flowering stage but it was not significantly influenced by decrease in soil moisture to 0.7 FC during seed maturation stage. Seed and shoot dry weights were affected negatively by drought stress. Mycorrhizal plants, however had significantly higher seed and shoot dry weights than non-mycorrhizal plants at all moisture levels except for seed weight at 0.6 FC. Root mycorrhizal colonization was positively correlated with RWC, LWP, shoot N and K, and seed weight, implying improvement of plant water and nutritional status as a result of colonization. Regardless of moisture treatments, bacterial inoculation caused a significant enhancement in N content and the highest N occurred in rhizobial inoculated plants at 0.85 FC and 0.7 FC. Shoot K was enhanced considerably by both bacterial and fungal inoculations, particularly in plants with dual inoculations where the highest shoot K levels were found. The relatively higher shoot and seed dry weights in plants inoculated with both G. etunicatum and B. japonicum could be ascribed to their higher RWC and LWP, suggesting that drought avoidance is main mechanism of this plant-microbe association in alleviation of water stress in soybean.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Wang ◽  
Yin Wang

Morphological observation of arbuscular mycorrhizal fungi (AMF) species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliataL. Raf.) and red tangerine (Citrus reticulataBlanco) were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM) colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10), all belonging to the genus ofGlomusSensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus) accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering withGlomus intraradices) accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards.


1998 ◽  
Vol 28 (1) ◽  
pp. 150-153
Author(s):  
J N Gemma ◽  
R E Koske ◽  
E M Roberts ◽  
S Hester

Rooted cuttings of Taxus times media var. densiformis Rehd. were inoculated with the arbuscular mycorrhizal fungi Gigaspora gigantea (Nicol. & Gerd.) Gerd. & Trappe or Glomus intraradices Schenck and Smith and grown for 9-15 months in a greenhouse. At the completion of the experiments, leaves of inoculated plants contained significantly more chlorophyll (1.3-4.1 times as much) than did noninoculated plants. In addition, mycorrhizal plants had root systems that were significantly larger (1.3-1.4 times) and longer (1.7-2.1 times) than nonmycorrhizal plants, and they possessed significantly more branch roots (1.3-2.9 times). No differences in stem diameter and height or shoot dry weight were evident at the end of the experiments, although the number of buds was significantly greater in the cuttings inoculated with G. intraradices after 15 months.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sheng-Min Liang ◽  
Fei Zhang ◽  
Ying-Ning Zou ◽  
Kamil Kuča ◽  
Qiang-Sheng Wu

Soil water deficit seriously affects crop production, and soil arbuscular mycorrhizal fungi (AMF) enhance drought tolerance in crops by unclear mechanisms. Our study aimed to analyze changes in non-targeted metabolomics in roots of trifoliate orange (Poncirus trifoliata) seedlings under well-watered and soil drought after inoculation with Rhizophagus intraradices, with a focus on terpenoid profile. Root mycorrhizal fungal colonization varied from 70% under soil drought to 85% under soil well-watered, and shoot and root biomass was increased by AMF inoculation, independent of soil water regimes. A total of 643 secondary metabolites in roots were examined, and 210 and 105 differential metabolites were regulated by mycorrhizal fungi under normal water and drought stress, along with 88 and 17 metabolites being up-and down-regulated under drought conditions, respectively. KEGG annotation analysis of differential metabolites showed 38 and 36 metabolic pathways by mycorrhizal inoculation under normal water and drought stress conditions, respectively. Among them, 33 metabolic pathways for mycorrhization under drought stress included purine metabolism, pyrimidine metabolism, alanine, aspartate and glutamate metabolism, etc. We also identified 10 terpenoid substances, namely albiflorin, artemisinin (−)-camphor, capsanthin, β-caryophyllene, limonin, phytol, roseoside, sweroside, and α-terpineol. AMF colonization triggered the decline of almost all differential terpenoids, except for β-caryophyllene, which was up-regulated by mycorrhizas under drought, suggesting potential increase in volatile organic compounds to initiate plant defense responses. This study provided an overview of AMF-induced metabolites and metabolic pathways in plants under drought, focusing on the terpenoid profile.


2021 ◽  
Vol 26 (02) ◽  
pp. 201-208
Author(s):  
Anass Kchikich

Nitrogen (N), one of the most important elements for plant growth, is needed by plants in large quantities. However, this nutrient has limited supply in the soil. Arbuscular mycorrhizal fungi (AMF) are known for their ability to form symbiotic association with plants and transfer the mineral nutrients to the host plants. To validate this hypothesis on sorghum plants, three ecotypes of this cereal (3p4, 3p9 and 4p11) were cultivated with and without AMF under low nitrogen concentration (0.5 mM NH4+). Growth parameters were determined and key enzymes responsible for nitrogen and carbon metabolisms such as glutamine synthetase (GS), glutamate dehydrogenase (GDH), phosphoenolpyruvate carboxylase (PEPC), isocitrate dehydrogenase (ICDH), malate dehydrogenase (MDH) and asparate aminotransferase (AAT) were measured. For the three sorghum ecotypes, mycorrhizal plants showed a higher plant growth compared to the control plants. The biochemical parameters revealed a significant increase in the nitrogen assimilatory enzymes; GS and GDH in the leaves and roots of mycorrhizal plants. Furthermore, mycorrhizal fungi also appear to have a significant effect on carbon assimilatory enzymes. These enzymes are known to have a cardinal role in the provision of carbon skeletons essential for the assimilation of ammonium and thus, amino acids synthesis. Our study indicates clearly that AMF can be an efficient way to optimize nitrogen uptake and/or assimilation by plants and thus improve the crop yields with lower amount of nitrogen fertilizers. © 2021 Friends Science Publishers


Sign in / Sign up

Export Citation Format

Share Document