scholarly journals Combining Multi-Dimensional Convolutional Neural Network (CNN) With Visualization Method for Detection of Aphis gossypii Glover Infection in Cotton Leaves Using Hyperspectral Imaging

2021 ◽  
Vol 12 ◽  
Author(s):  
Tianying Yan ◽  
Wei Xu ◽  
Jiao Lin ◽  
Long Duan ◽  
Pan Gao ◽  
...  

Cotton is a significant economic crop. It is vulnerable to aphids (Aphis gossypii Glovers) during the growth period. Rapid and early detection has become an important means to deal with aphids in cotton. In this study, the visible/near-infrared (Vis/NIR) hyperspectral imaging system (376–1044 nm) and machine learning methods were used to identify aphid infection in cotton leaves. Both tall and short cotton plants (Lumianyan 24) were inoculated with aphids, and the corresponding plants without aphids were used as control. The hyperspectral images (HSIs) were acquired five times at an interval of 5 days. The healthy and infected leaves were used to establish the datasets, with each leaf as a sample. The spectra and RGB images of each cotton leaf were extracted from the hyperspectral images for one-dimensional (1D) and two-dimensional (2D) analysis. The hyperspectral images of each leaf were used for three-dimensional (3D) analysis. Convolutional Neural Networks (CNNs) were used for identification and compared with conventional machine learning methods. For the extracted spectra, 1D CNN had a fine classification performance, and the classification accuracy could reach 98%. For RGB images, 2D CNN had a better classification performance. For HSIs, 3D CNN performed moderately and performed better than 2D CNN. On the whole, CNN performed relatively better than conventional machine learning methods. In the process of 1D, 2D, and 3D CNN visualization, the important wavelength ranges were analyzed in 1D and 3D CNN visualization, and the importance of wavelength ranges and spatial regions were analyzed in 2D and 3D CNN visualization. The overall results in this study illustrated the feasibility of using hyperspectral imaging combined with multi-dimensional CNN to detect aphid infection in cotton leaves, providing a new alternative for pest infection detection in plants.

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3085 ◽  
Author(s):  
Raluca Brehar ◽  
Delia-Alexandrina Mitrea ◽  
Flaviu Vancea ◽  
Tiberiu Marita ◽  
Sergiu Nedevschi ◽  
...  

The emergence of deep-learning methods in different computer vision tasks has proved to offer increased detection, recognition or segmentation accuracy when large annotated image datasets are available. In the case of medical image processing and computer-aided diagnosis within ultrasound images, where the amount of available annotated data is smaller, a natural question arises: are deep-learning methods better than conventional machine-learning methods? How do the conventional machine-learning methods behave in comparison with deep-learning methods on the same dataset? Based on the study of various deep-learning architectures, a lightweight multi-resolution Convolutional Neural Network (CNN) architecture is proposed. It is suitable for differentiating, within ultrasound images, between the Hepatocellular Carcinoma (HCC), respectively the cirrhotic parenchyma (PAR) on which HCC had evolved. The proposed deep-learning model is compared with other CNN architectures that have been adapted by transfer learning for the ultrasound binary classification task, but also with conventional machine-learning (ML) solutions trained on textural features. The achieved results show that the deep-learning approach overcomes classical machine-learning solutions, by providing a higher classification performance.


2021 ◽  
Author(s):  
Rui Liu ◽  
Xin Yang ◽  
Chong Xu ◽  
Luyao Li ◽  
Xiangqiang Zeng

Abstract Landslide susceptibility mapping (LSM) is a useful tool to estimate the probability of landslide occurrence, providing a scientific basis for natural hazards prevention, land use planning, and economic development in landslide-prone areas. To date, a large number of machine learning methods have been applied to LSM, and recently the advanced Convolutional Neural Network (CNN) has been gradually adopted to enhance the prediction accuracy of LSM. The objective of this study is to introduce a CNN based model in LSM and systematically compare its overall performance with the conventional machine learning models of random forest, logistic regression, and support vector machine. Herein, we selected the Jiuzhaigou region in Sichuan Province, China as the study area. A total number of 710 landslides and 12 predisposing factors were stacked to form spatial datasets for LSM. The ROC analysis and several statistical metrics, such as accuracy, root mean square error (RMSE), Kappa coefficient, sensitivity, and specificity were used to evaluate the performance of the models in the training and validation datasets. Finally, the trained models were calculated and the landslide susceptibility zones were mapped. Results suggest that both CNN and conventional machine-learning based models have a satisfactory performance (AUC: 85.72% − 90.17%). The CNN based model exhibits excellent good-of-fit and prediction capability, and achieves the highest performance (AUC: 90.17%) but also significantly reduces the salt-of-pepper effect, which indicates its great potential of application to LSM.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7078
Author(s):  
Yueting Wang ◽  
Minzan Li ◽  
Ronghua Ji ◽  
Minjuan Wang ◽  
Lihua Zheng

Visible-near-infrared spectrum (Vis-NIR) spectroscopy technology is one of the most important methods for non-destructive and rapid detection of soil total nitrogen (STN) content. In order to find a practical way to build STN content prediction model, three conventional machine learning methods and one deep learning approach are investigated and their predictive performances are compared and analyzed by using a public dataset called LUCAS Soil (19,019 samples). The three conventional machine learning methods include ordinary least square estimation (OLSE), random forest (RF), and extreme learning machine (ELM), while for the deep learning method, three different structures of convolutional neural network (CNN) incorporated Inception module are constructed and investigated. In order to clarify effectiveness of different pre-treatments on predicting STN content, the three conventional machine learning methods are combined with four pre-processing approaches (including baseline correction, smoothing, dimensional reduction, and feature selection) are investigated, compared, and analyzed. The results indicate that the baseline-corrected and smoothed ELM model reaches practical precision (coefficient of determination (R2) = 0.89, root mean square error of prediction (RMSEP) = 1.60 g/kg, and residual prediction deviation (RPD) = 2.34). While among three different structured CNN models, the one with more 1 × 1 convolutions preforms better (R2 = 0.93; RMSEP = 0.95 g/kg; and RPD = 3.85 in optimal case). In addition, in order to evaluate the influence of data set characteristics on the model, the LUCAS data set was divided into different data subsets according to dataset size, organic carbon (OC) content and countries, and the results show that the deep learning method is more effective and practical than conventional machine learning methods and, on the premise of enough data samples, it can be used to build a robust STN content prediction model with high accuracy for the same type of soil with similar agricultural treatment.


2020 ◽  
Vol 14 (6) ◽  
pp. 3565-3579
Author(s):  
Ahmed M. Rady ◽  
Daniel E. Guyer ◽  
Irwin R. Donis-González ◽  
William Kirk ◽  
Nicholas James Watson

Abstract The quality of potato tubers is dependent on several attributes been maintained at appropriate levels during storage. One of these attributes is sprouting activity that is initiated from meristematic regions of the tubers (eyes). Sprouting activity is a major problem that contributes to reduced shelf life and elevated sugar content, which affects the marketability of seed tubers as well as fried products. This study compared the capabilities of three different optical systems (1: visible/near-infrared (Vis/NIR) interactance spectroscopy, 2: Vis/NIR hyperspectral imaging, 3: NIR transmittance) and machine learning methods to detect sprouting activity in potatoes based on the primordial leaf count (LC). The study was conducted on Frito Lay 1879 and Russet Norkotah cultivars stored at different temperatures and classification models were developed that considered both cultivars combined and classified the tubers as having either high or low sprouting activity. Measurements were performed on whole tubers and sliced samples to see the effect this would have on identifying sprouting activity. Sequential forward selection was applied for wavelength selection and the classification was carried out using K-nearest neighbor, partial least squares discriminant analysis, and soft independent modeling class analogy. The highest classification accuracy values obtained by the hyperspectral imaging system and was 87.5% and 90% for sliced and whole samples, respectively. Data fusion did not show classification improvement for whole tubers, whereas a 7.5% classification accuracy increase was illustrated for sliced samples. By investigating different optical techniques and machine learning methods, this study provides a first step toward developing a handheld optical device for early detection of sprouting activity, enabling advanced aid potato storage management.


Author(s):  
Furkan Bilek ◽  
Ferhat Balgetir ◽  
Caner Feyzi Demir ◽  
Gökhan Alkan ◽  
Seda Arslan-Tuncer

Abstract Background and Objective Multiple sclerosis (MS) is a chronic, progressive, and autoimmune disease of the central nervous system (CNS) characterized by inflammation, demyelination, and axonal injury. In patients with newly diagnosed MS (ndMS), ataxia can present either as mild or severe and can be difficult to diagnose in the absence of clinical disability. Such difficulties can be eliminated by using decision support systems supported by machine learning methods. The present study aimed to achieve early diagnosis of ataxia in ndMS patients by using machine learning methods with spatiotemporal parameters. Materials and Methods The prospective study included 32 ndMS patients with an Expanded Disability Status Scale (EDSS) score of≤2.0 and 32 healthy volunteers. A total of 14 parameters were elicited by using a Win-Track platform. The ndMS patients were differentiated from healthy individuals using multiple classifiers including Artificial Neural Network (ANN), Support Vector Machine (SVM), the k-nearest neighbors (K-NN) algorithm, and Decision Tree Learning (DTL). To improve the performance of the classification, a Relief-based feature selection algorithm was applied to select the subset that best represented the whole dataset. Performance evaluation was achieved based on several criteria such as Accuracy (ACC), Sensitivity (SN), Specificity (SP), and Precision (PREC). Results ANN had a higher classification performance compared to other classifiers, whereby it provided an accuracy, sensitivity, and specificity of 89, 87.8, 90.3% with the use of all parameters and provided the values of 93.7, 96.6%, and 91.1% with the use of parameters selected by the Relief algorithm, respectively. Significance To our knowledge, this is the first study of its kind in the literature to investigate the diagnosis of ataxia in ndMS patients by using machine learning methods with spatiotemporal parameters. The proposed method, i. e. Relief-based ANN method, successfully diagnosed ataxia by using a lower number of parameters compared to the numbers of parameters reported in clinical studies, thereby reducing the costs and increasing the performance of the diagnosis. The method also provided higher rates of accuracy, sensitivity, and specificity in the diagnosis of ataxia in ndMS patients compared to other methods. Taken together, these findings indicate that the proposed method could be helpful in the diagnosis of ataxia in minimally impaired ndMS patients and could be a pathfinder for future studies.


Foods ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 620 ◽  
Author(s):  
Pan Gao ◽  
Wei Xu ◽  
Tianying Yan ◽  
Chu Zhang ◽  
Xin Lv ◽  
...  

Narrow-leaved oleaster (Elaeagnus angustifolia) fruit is a kind of natural product used as food and traditional medicine. Narrow-leaved oleaster fruits from different geographical origins vary in chemical and physical properties and differ in their nutritional and commercial values. In this study, near-infrared hyperspectral imaging covering the spectral range of 874–1734 nm was used to identify the geographical origins of dry narrow-leaved oleaster fruits with machine learning methods. Average spectra of each single narrow-leaved oleaster fruit were extracted. Second derivative spectra were used to identify effective wavelengths. Partial least squares discriminant analysis (PLS-DA) and support vector machine (SVM) were used to build discriminant models for geographical origin identification using full spectra and effective wavelengths. In addition, deep convolutional neural network (CNN) models were built using full spectra and effective wavelengths. Good classification performances were obtained by these three models using full spectra and effective wavelengths, with classification accuracy of the calibration, validation, and prediction set all over 90%. Models using effective wavelengths obtained close results to models using full spectra. The performances of the PLS-DA, SVM, and CNN models were close. The overall results illustrated that near-infrared hyperspectral imaging coupled with machine learning could be used to trace geographical origins of dry narrow-leaved oleaster fruits.


Sign in / Sign up

Export Citation Format

Share Document