scholarly journals Estimating the Growth Indices and Nitrogen Status Based on Color Digital Image Analysis During Early Growth Period of Winter Wheat

2021 ◽  
Vol 12 ◽  
Author(s):  
Ben Zhao ◽  
Yonghui Zhang ◽  
Aiwang Duan ◽  
Zhandong Liu ◽  
Junfu Xiao ◽  
...  

The non-destructive estimation of plant nitrogen (N) status is imperative for timely and in-season crop N management. The objectives of this study were to use canopy cover (CC) to establish the empirical relations between plant growth indices [shoot dry matter (SDM), leaf area index (LAI), shoot N accumulation (SNA), shoot nitrogen concentration (SNC)], and CC as well as to test the feasibility of using CC to assess N nutrition index (NNI) from Feekes 3 to Feekes 6 stages of winter wheat. Four multi-locational (2 sites), multi-cultivars (four cultivars), and multi-N rates (0–300 kg N ha–1) field experiments were carried out during 2016 to 2018 seasons. The digital images of the canopy were captured by a digital camera from Feekes 3 to Feekes 6 stages of winter wheat, while SDM, LAI, SNA, and SNC were measured by destructive plant sampling. CC was calculated from digital images developed by self-programmed software. CC showed significant correlations with growth indices (SDM, LAI, and SNA) across the different cultivars and N treatments, except for SNC. However, the stability of these empirical models was affected by cultivar characteristics and N application rates. Plant N status of winter wheat was assessed using CC through two methods (direct and indirect methods). The direct and indirect methods failed to develop a unified linear regression to estimate NNI owing to the high dispersion of winter wheat SNC during its early growth stages. The relationships of CC with SDM, SNC and NNI developed at individual growth stages of winter wheat using both methods were highly significant. The relationships developed at individual growth stages did not need to consider the effect of N dilution process, yet their stability is influenced by cultivar characteristics. This study revealed that CC has larger limitation to be used as a proxy to manage the crop growth and N nutrition during the early growth period of winter wheat despite it is an easily measured index.

2020 ◽  
Vol 12 (22) ◽  
pp. 3684
Author(s):  
Jie Jiang ◽  
Zeyu Zhang ◽  
Qiang Cao ◽  
Yan Liang ◽  
Brian Krienke ◽  
...  

Using remote sensing to rapidly acquire large-area crop growth information (e.g., shoot biomass, nitrogen status) is an urgent demand for modern crop production; unmanned aerial vehicle (UAV) acts as an effective monitoring platform. In order to improve the practicability and efficiency of UAV based monitoring technique, four field experiments involving different nitrogen (N) rates (0–360 kg N ha−1) and seven winter wheat (Triticum aestivum L.) varieties were conducted at different eco-sites (Sihong, Rugao, and Xinghua) during 2015–2019. A multispectral active canopy sensor (RapidSCAN CS-45; Holland Scientific Inc., Lincoln, NE, USA) mounted on a multirotor UAV platform was used to collect the canopy spectral reflectance data of winter wheat at key growth stages, three growth parameters (leaf area index (LAI), leaf dry matter (LDM), plant dry matter (PDM)) and three N indicators (leaf N accumulation (LNA), plant N accumulation (PNA) and N nutrition index (NNI)) were measured synchronously. The quantitative linear relationships between spectral data and six growth indices were systematically analyzed. For monitoring growth and N nutrition status at Feekes stages 6.0–10.0, 10.3–11.1 or entire growth stages, red edge ratio vegetation index (RERVI), red edge chlorophyll index (CIRE) and difference vegetation index (DVI) performed the best among the red edge band-based and red-based vegetation indices, respectively. Across all growth stages, DVI was highly correlated with LAI (R2 = 0.78), LDM (R2 = 0.61), PDM (R2 = 0.63), LNA (R2 = 0.65) and PNA (R2 = 0.73), whereas the relationships between RERVI (R2 = 0.62), CIRE (R2 = 0.62) and NNI had high coefficients of determination. The developed models performed better in monitoring growth indices and N status at Feekes stages 10.3–11.1 than Feekes stages 6.0–10.0. To sum it up, the UAV-mounted active sensor system is able to rapidly monitor the growth and N nutrition status of winter wheat and can be deployed for UAV-based remote-sensing of crops.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5579
Author(s):  
Jie Jiang ◽  
Cuicun Wang ◽  
Hui Wang ◽  
Zhaopeng Fu ◽  
Qiang Cao ◽  
...  

The accurate estimation and timely diagnosis of crop nitrogen (N) status can facilitate in-season fertilizer management. In order to evaluate the performance of three leaf and canopy optical sensors in non-destructively diagnosing winter wheat N status, three experiments using seven wheat cultivars and multi-N-treatments (0–360 kg N ha−1) were conducted in the Jiangsu province of China from 2015 to 2018. Two leaf sensors (SPAD 502, Dualex 4 Scientific+) and one canopy sensor (RapidSCAN CS-45) were used to obtain leaf and canopy spectral data, respectively, during the main growth period. Five N indicators (leaf N concentration (LNC), leaf N accumulation (LNA), plant N concentration (PNC), plant N accumulation (PNA), and N nutrition index (NNI)) were measured synchronously. The relationships between the six sensor-based indices (leaf level: SPAD, Chl, Flav, NBI, canopy level: NDRE, NDVI) and five N parameters were established at each growth stages. The results showed that the Dualex-based NBI performed relatively well among four leaf-sensor indices, while NDRE of RS sensor achieved a best performance due to larger sampling area of canopy sensor for five N indicators estimation across different growth stages. The areal agreement of the NNI diagnosis models ranged from 0.54 to 0.71 for SPAD, 0.66 to 0.84 for NBI, and 0.72 to 0.86 for NDRE, and the kappa coefficient ranged from 0.30 to 0.52 for SPAD, 0.42 to 0.72 for NBI, and 0.53 to 0.75 for NDRE across all growth stages. Overall, these results reveal the potential of sensor-based diagnosis models for the rapid and non-destructive diagnosis of N status.


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 500
Author(s):  
Ke Zhang ◽  
Xue Wang ◽  
Xiaoling Wang ◽  
Syed Tahir Ata-Ul-Karim ◽  
Yongchao Tian ◽  
...  

Accurately summarizing Nitrogen (N) content as a prelude to optimal N fertilizer application is complicated during the vegetative growth period of all the crop species studied. The critical nitrogen (N) concentration (Nc) dilution curve is a stable diagnostic indicator, which performs plant critical N concentration trends as crop grows. This study developed efficient technologies for different organ-based (plant dry matters (PDM), leaf DM (LDM), stem DM (SDM), and leaf area index (LAI)) estimation of Nc curves to enrich the practical applications of precision N management strategies. Four winter wheat cultivars were planted with 10 different N treatments in Jiangsu province of eastern China. Results showed the SDM-based curve had a better performance than the PDM-based curve in N nutrition index (NNI) estimation, accumulated N deficit (AND) calculation, and N requirement (NR) determination. The regression coefficients ‘a’ and ‘b’ varied among the four critical N dilution models: Nc = 3.61 × LDM–0.19, R2 = 0.77; Nc = 2.50 × SDM–0.44, R2 = 0.89; Nc = 4.16 × PDM–0.41, R2 = 0.87; and Nc = 3.82 × LAI–0.36, R2 = 0.81. In later growth periods, the SDM-based curve was found to be a feasible indicator for calculating NNI, AND, and NR, relative to curves based on the other indicators. Meanwhile, the lower LAI-based curve coefficient variation values stated that leaf-related indicators were also a good choice for developing the N curve with high efficiency as compared to other biomass-based approaches. The SDM-based curve was the more reliable predictor of relative yield because of its low relative root mean square error in most of the growth stages. The curves developed in this study will provide diverse choices of indicators for establishing an integrated procedure of diagnosing wheat N status, and improving the accuracy and efficiency of wheat N fertilizer management.


2017 ◽  
Vol 8 (2) ◽  
pp. 343-348 ◽  
Author(s):  
S. Huang ◽  
Y. Miao ◽  
F. Yuan ◽  
Q. Cao ◽  
H. Ye ◽  
...  

The objective of this study was to evaluate the potential of using Multiplex 3, a hand-held canopy fluorescence sensor, to determine rice nitrogen (N) status at different growth stages. In 2013, a paddy rice field experiment with five N fertilizer treatments and two varieties was conducted in Northeast China. Field samples and fluorescence data were collected simultaneously at the panicle initiation (PI), stem elongation (SE), and heading (HE) stages. Four N status indicators, leaf N concentration (LNC), plant N concentration (PNC), plant N uptake (PNU) and N nutrition index (NNI), were determined. The preliminary results indicated that different N application rates significantly affected most of the fluorescence variables, especially the simple fluorescence ratios (SFR_G, SFR_R), flavonoid (FLAV), and N balance indices (NBI_G, NBI_R). These variables were highly correlated with N status indicators. More studies are needed to further evaluate the accuracy of rice N status diagnosis using fluorescence sensing at different growth stages.


2020 ◽  
Vol 12 (7) ◽  
pp. 2801
Author(s):  
Yuan Li ◽  
Yi Dong ◽  
Dongqin Yin ◽  
Diyou Liu ◽  
Pengxin Wang ◽  
...  

Monitoring agricultural drought is important to food security and the sustainable development of human society. In order to improve the accuracy of soil moisture and winter wheat yield estimation, drought monitoring effects of optical drought index data, meteorological drought data, and passive microwave soil moisture data were explored during individual and whole growth periods of winter wheat in 2003–2011, taking Henan Province of China as the research area. The model of drought indices and relative meteorological yield of winter wheat in individual and whole growth periods was constructed based on multiple linear regression. Results showed a higher correlation between Moderate-Resolution Imaging Spectroradiometer (MODIS) drought indices and 10 cm relative soil moisture (RSM10) than 20 cm (RSM20) and 50 cm (RSM50). In the whole growth period, the correlation coefficient (R) between vegetation supply water index (VSWI) and RSM10 had the highest correlation (R = −0.206), while in individual growth periods, the vegetation temperature condition index (VTCI) was superior to the vegetation health index (VHI) and VSWI. Among the meteorological drought indices, the 10-day, 20-day, and 30-day standard precipitation evapotranspiration indices (SPEI1, SPEI2, and SPEI3) were all most relevant to RSM10 during individual and whole growth periods. RSM50 and SPEI3 had a higher correlation, indicating that deep soil moisture was more related to drought on a long time scale. The relationship between Advanced Microwave Scanning Radiometer for EOS soil moisture (AMSR-E SM) and VTCI was stable and significantly positive in individual and whole growth periods, which was better compared to VHI and VSWI. Compared with the drought indices and the relative meteorological yield in the city, VHI had the best monitoring effect during individual and whole growth periods. Results also showed that drought occurring at the jointing–heading stage can reduce winter wheat yield, while a certain degree of drought occurring at the heading–milk ripening stage can increase the yield. In the whole growth period, the combination of SPEI1, SPEI2, and VHI had the best performance, with a coefficient of determination (R2) of 0.282 with the combination of drought indices as the independent variables and relative meteorological yield as the dependent variable. In the individual growth period, the model in the later growth period of winter wheat performed well, especially in the returning green–jointing stage (R2 = 0.212). Results show that the combination of multiple linear drought indices in the whole growth period and the model in the returning green–jointing period could improve the accuracy of winter wheat yield estimation. This study is helpful for effective agricultural drought monitoring of winter wheat in Henan Province.


2019 ◽  
Vol 11 (16) ◽  
pp. 1847 ◽  
Author(s):  
Shanyu Huang ◽  
Yuxin Miao ◽  
Fei Yuan ◽  
Qiang Cao ◽  
Huichun Ye ◽  
...  

Precision nitrogen (N) management requires an accurate and timely in-season assessment of crop N status. The proximal fluorescence sensor Multiplex®3 is a promising tool for monitoring crop N status. It performs a non-destructive estimation of plant chlorophyll, flavonol, and anthocyanin contents, which are related to plant N status. The objective of this study was to evaluate the potential of proximal fluorescence sensing for N status estimation at different growth stages for rice in cold regions. In 2012 and 2013, paddy rice field experiments with five N supply rates and two varieties were conducted in northeast China. Field samples and fluorescence data were collected in the leaf scale (LS), on-the-go (OG), and above the canopy (AC) modes using Multiplex®3 at the panicle initiation (PI), stem elongation (SE), and heading (HE) stages. The relationships between the Multiplex indices or normalized N sufficient indices (NSI) and five N status indicators (above-ground biomass (AGB), leaf N concentration (LNC), plant N concentration (PNC), plant N uptake (PNU), and N nutrition index (NNI)) were evaluated. Results showed that Multiplex measurements taken using the OG mode were more sensitive to rice N status than those made in the other two modes in this study. Most of the measured fluorescence indices, especially the N balance index (NBI), simple fluorescence ratios (SFR), blue–green to far-red fluorescence ratio (BRR_FRF), and flavonol (FLAV) were highly sensitive to N status. Strong relationships between these fluorescence indices and N indicators, especially the LNC, PNC, and NNI were revealed, with coefficients of determination (R2) ranging from 0.40 to 0.78. The N diagnostic results indicated that the normalized N sufficiency index based on NBI under red illumination (NBI_RNSI) and FLAV achieved the highest diagnostic accuracy rate (90%) at the SE and HE stages, respectively, while NBI_RNSI showed the highest diagnostic consistency across growth stages. The study concluded that the Multiplex sensor could be used to reliably estimate N nutritional status for rice in cold regions, especially for the estimation of LNC, PNC, and NNI. The normalized N sufficiency indices based on the Multiplex indices could further improve the accuracy of N nutrition diagnosis by reducing the influences of inter-annual variations and different varieties, as compared with the original Multiplex indices.


Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 201 ◽  
Author(s):  
Qiang Cao ◽  
Yuxin Miao ◽  
Jianning Shen ◽  
Fei Yuan ◽  
Shanshan Cheng ◽  
...  

Active crop canopy sensors can be used for non-destructive real-time diagnosis of crop nitrogen (N) status and guiding in-season N management. However, limited studies have compared the performances of two commercially available sensors with three different wavebands: Crop Circle ACS-470 (CC-470) and Crop Circle ACS-430 (CC-430). The objective of this study was to evaluate the performances of CC-470 and CC-430 sensors for estimating winter wheat (Triticum aestivum L.) N status at different measurement heights (40 cm, 70 cm and 100 cm) and growth stages. Results indicated that the canopy reflectance values of CC-470 were more affected by height compared to the CC-430 sensor. The normalized difference red edge (NDRE) and red edge chlorophyll index (CIRE) of CC-430 were stable at the three different measuring heights. The relationships between these indices and the N status indicators were stronger at the Feekes 9–10 stages than the Feekes 6–7 stages for both sensors; however, the CC-430 sensor-based vegetation indices had higher coefficient of determination (R2) values for both stages. It is concluded that the CC-430 sensor is more reliable than CC-470 for winter wheat N status estimation due to its capability of making height-independent measurements. These results demonstrated the importance of considering the influences of height when using active canopy sensors in field measurements.


2006 ◽  
Vol 29 (11) ◽  
pp. 1983-1997 ◽  
Author(s):  
D. B. Arnall ◽  
W. R. Raun ◽  
J. B. Solie ◽  
M. L. Stone ◽  
G. V. Johnson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document