scholarly journals Genetic Relationships Among Physiological Processes, Phenology, and Grain Yield Offer an Insight Into the Development of New Cultivars in Soybean (Glycine max L. Merr)

2021 ◽  
Vol 12 ◽  
Author(s):  
Miguel Angel Lopez ◽  
Fabiana Freitas Moreira ◽  
Katy Martin Rainey

Soybean grain yield has steadily increased during the last century because of enhanced cultivars and better agronomic practices. Increases in the total biomass, shorter cultivars, late maturity, and extended seed-filling period are frequently reported as main contributors for better soybean performance. However, there are still processes associated with crop physiology to be improved. From the theoretical standpoint, yield is the product of efficiency of light interception (Ei), radiation use efficiency (RUE), and harvest index (HI). The relative contribution of these three parameters on the final grain yield (GY), their interrelation with other phenological–physiological traits, and their environmental stability have not been well established for soybean. In this study, we determined the additive–genetic relationship among 14 physiological and phenological traits including photosynthesis (A) and intrinsic water use efficiency (iWUE) in a panel of 383 soybean recombinant inbred lines (RILs) through direct (path analyses) and indirect learning methods [least absolute shrinkage and selection operator (LASSO) algorithm]. We evaluated the stability of Ei, RUE, and HI through the slope from the Finley and Wilkinson joint regression and the genetic correlation between traits evaluated in different environments. Results indicate that both supervised and unsupervised methods effectively establish the main relationships underlying changes in Ei, RUE, HI, and GY. Variations in the average growth rate of canopy coverage for the first 40 days after planting (AGR40) explain most of the changes in Ei. RUE is primarily influenced by phenological traits of reproductive length (RL) and seed-filling (SFL) as well as iWUE, light extinction coefficient (K), and A. HI showed a strong relationship with A, AGR40, SFL, and RL. According to the path analysis, an increase in one standard unit of HI promotes changes in 0.5 standard units of GY, while changes in the same standard unit of RUE and Ei produce increases on GY of 0.20 and 0.19 standard units, respectively. RUE, Ei, and HI exhibited better environmental stability than GY, although changes associated with year and location showed a moderate effect in Ei and RUE, respectively. This study brings insight into a group of traits involving A, iWUE, and RL to be prioritized during the breeding process for high-yielding cultivars.

2018 ◽  
Vol 76 (2) ◽  
pp. 115-130 ◽  
Author(s):  
G Guo ◽  
K Fang ◽  
J Li ◽  
HW Linderholm ◽  
D Li ◽  
...  

2015 ◽  
Vol 41 (3) ◽  
pp. 422 ◽  
Author(s):  
Cheng-Xin JU ◽  
Jin TAO ◽  
Xi-Yang QIAN ◽  
Jun-Fei GU ◽  
Bu-Hong ZHAO ◽  
...  

2017 ◽  
Vol 43 (6) ◽  
pp. 899 ◽  
Author(s):  
Ming HUANG ◽  
Zhao-Hui WANG ◽  
Lai-Chao LUO ◽  
Sen WANG ◽  
Ming BAO ◽  
...  

2011 ◽  
Vol 37 (1) ◽  
pp. 152-157 ◽  
Author(s):  
You-Liang YE ◽  
Yu-Fang HUANG ◽  
Chun-Sheng LIU ◽  
Ri-Tao QU ◽  
Hai-Yan SONG ◽  
...  

Crop Science ◽  
2002 ◽  
Vol 42 (1) ◽  
pp. 122 ◽  
Author(s):  
A. G. Condon ◽  
R. A. Richards ◽  
G. J. Rebetzke ◽  
G. D. Farquhar

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 489
Author(s):  
Amber Hageman ◽  
Elizabeth Van Volkenburgh

Drought is a major limiter of yield in common bean, decreasing food security for those who rely on it as an important source of protein. While drought can have large impacts on yield by reducing photosynthesis and therefore resources availability, source strength is not a reliable indicator of yield. One reason resource availability does not always translate to yield in common bean is because of a trait inherited from wild ancestors. Wild common bean halts growth and seed filling under drought and awaits better conditions to resume its developmental program. This trait has been carried into domesticated lines, where it can result in strong losses of yield in plants already producing pods and seeds, especially since many domesticated lines were bred to have a determinate growth habit. This limits the plants ability to produce another flush of flowers, even if the first set is aborted. However, some bred lines are able to maintain higher yields under drought through maintaining growth and seed filling rates even under water limitations, unlike their wild predecessors. We believe that maintenance of sink strength underlies this ability, since plants which fill seeds under drought maintain growth of sinks generally, and growth of sinks correlates strongly with yield. Sink strength is determined by a tissue’s ability to acquire resources, which in turn relies on resource uptake and metabolism in that tissue. Lines which achieve higher yields maintain higher resource uptake rates into seeds and overall higher partitioning efficiencies of total biomass to yield. Drought limits metabolism and resource uptake through the signaling molecule abscisic acid (ABA) and its downstream affects. Perhaps lines which maintain higher sink strength and therefore higher yields do so through decreased sensitivity to or production of ABA.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 313
Author(s):  
Guoqiang Zhang ◽  
Bo Ming ◽  
Dongping Shen ◽  
Ruizhi Xie ◽  
Peng Hou ◽  
...  

Achieving optimal balance between maize yield and water use efficiency is an important challenge for irrigation maize production in arid areas. In this study, we conducted an experiment in Xinjiang China in 2016 and 2017 to quantify the response of maize yield and water use to plant density and irrigation schedules. The treatments included four irrigation levels: 360 (W1), 480 (W2), 600 (W3), and 720 mm (W4), and five plant densities: 7.5 (D1), 9.0 (D2), 10.5 (D3), 12.0 (D4), and 13.5 plants m−2 (D5). The results showed that increasing the plant density and the irrigation level could both significantly increase the leaf area index (LAI). However, LAI expansion significantly increased evapotranspiration (ETa) under irrigation. The combination of irrigation level 600 mm (W3) and plant density 12.0 plants m−2 (D4) produced the highest maize yield (21.0–21.2 t ha−1), ETa (784.1–797.8 mm), and water use efficiency (WUE) (2.64–2.70 kg m−3), with an LAI of 8.5–8.7 at the silking stage. The relationship between LAI and grain yield and evapotranspiration were quantified, and, based on this, the relationship between water use and maize productivity was analyzed. Moreover, the optimal LAI was established to determine the reasonable irrigation level and coordinate the relationship between the increase in grain yield and the decrease in water use efficiency.


Sign in / Sign up

Export Citation Format

Share Document