scholarly journals The Role of Endoplasmic Reticulum Stress Response in Pollen Development and Heat Stress Tolerance

2021 ◽  
Vol 12 ◽  
Author(s):  
Mohan B. Singh ◽  
Neeta Lohani ◽  
Prem L. Bhalla

Endoplasmic reticulum (ER) stress is defined by a protracted disruption in protein folding and accumulation of unfolded or misfolded proteins in the ER. This accumulation of unfolded proteins can result from excessive demands on the protein folding machinery triggered by environmental and cellular stresses such as nutrient deficiencies, oxidative stress, pathogens, and heat. The cell responds to ER stress by activating a protective pathway termed unfolded protein response (UPR), which comprises cellular mechanisms targeted to maintain cellular homeostasis by increasing the ER’s protein folding capacity. The UPR is especially significant for plants as being sessile requires them to adapt to multiple environmental stresses. While multiple stresses trigger the UPR at the vegetative stage, it appears to be active constitutively in the anthers of unstressed plants. Transcriptome analysis reveals significant upregulation of ER stress-related transcripts in diploid meiocytes and haploid microspores. Interestingly, several ER stress-related genes are specifically upregulated in the sperm cells. The analysis of gene knockout mutants in Arabidopsis has revealed that defects in ER stress response lead to the failure of normal pollen development and enhanced susceptibility of male gametophyte to heat stress conditions. In this mini-review, we provide an overview of the role of ER stress and UPR in pollen development and its protective roles in maintaining male fertility under heat stress conditions.

Author(s):  
Kashi Raj Bhattarai ◽  
Thoufiqul Alam Riaz ◽  
Hyung-Ryong Kim ◽  
Han-Jung Chae

AbstractThe endoplasmic reticulum (ER) is an essential organelle of eukaryotic cells. Its main functions include protein synthesis, proper protein folding, protein modification, and the transportation of synthesized proteins. Any perturbations in ER function, such as increased demand for protein folding or the accumulation of unfolded or misfolded proteins in the ER lumen, lead to a stress response called the unfolded protein response (UPR). The primary aim of the UPR is to restore cellular homeostasis; however, it triggers apoptotic signaling during prolonged stress. The core mechanisms of the ER stress response, the failure to respond to cellular stress, and the final fate of the cell are not yet clear. Here, we discuss cellular fate during ER stress, cross talk between the ER and mitochondria and its significance, and conditions that can trigger ER stress response failure. We also describe how the redox environment affects the ER stress response, and vice versa, and the aftermath of the ER stress response, integrating a discussion on redox imbalance-induced ER stress response failure progressing to cell death and dynamic pathophysiological changes.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Anup Mammen Oommen ◽  
Usha Narayanan ◽  
M. R. Jagannath

Extracellular/intracellular stimuli can influence eukaryotic cell function through organelles that regulate critical signaling pathways. The endoplasmic reticulum (ER), for example, impacts cellular processes including protein synthesis, folding and secretion; amino acid transport; apoptosis; cell proliferation; lipid synthesis across major cell types in response to stimuli such as accumulation of misfolded proteins and glucose deprivation. Dysregulated signaling pathways underlying the ER-mediated processes mentioned above have been linked to disease conditions such as diabetes, obesity, and Alzheimer's disease. Our current understanding, however, lacks a detailed network view that integrates organelle-mediated pathway dysregulation with cellular processes and disease pathogenesis. In this report, we introduce an integrative network biology approach that combines ER-stress response pathways with basic cellular processes using data from peer-reviewed literature. As an example, we apply our systems biology approach to study the role of ER stress in pancreatic β cells under obese diabetic conditions, generate testable hypotheses, and provide novel insights into β-cell pathogenesis.


2006 ◽  
Vol 291 (3) ◽  
pp. H1411-H1420 ◽  
Author(s):  
Asim Azfer ◽  
Jianli Niu ◽  
Linda M. Rogers ◽  
Frances M. Adamski ◽  
Pappachan E. Kolattukudy

Endoplasmic reticulum (ER) stress has been found to be associated with neurodegenerative diseases and diabetes mellitus. Whether ER stress is involved in the development of heart disease is not known. Cardiac-specific expression of monocyte chemoattractant protein-1 (MCP-1) in mice causes the development of ischemic heart disease. Here we report that microarray analysis of gene expression changes in the heart of these transgenic mice revealed that a cluster of ER stress-related genes was transcriptionally activated in the heart during the development of ischemic heart disease. The gene array results were verified by quantitative real-time PCR that showed highly elevated transcript levels of genes involved in unfolded protein response such as ER and cytoplasmic chaperones, oxidoreductases, protein disulfide isomerase (PDI) family, and ER-associated degradation system such as ubiquitin. Immunoblot analysis confirmed the expression of chaperones, PDI, and ubiquitin. Immunohistochemical analyses showed that ER stress proteins were associated mainly with the degenerating cardiomyocytes. A novel ubiquitin fold modifier (Ufm1) that has not been previously associated with ER stress and not found to be induced under any condition was also found to be upregulated in the hearts of MCP mice (transgenic mice that express MCP-1 specifically in the heart). The present results strongly suggest that activation of ER stress response is involved in the development of ischemic heart disease in this murine model.


Author(s):  
Fernanda L.B. Mügge ◽  
Aristóbolo M. Silva

AbstractOver the past decade, a handful of evidence has been provided that nonsteroidal anti-inflammatory drugs (NSAIDs) display effects on the homeostasis of the endoplasmic reticulum (ER). Their uptake into cells will eventually lead to activation or inhibition of key molecules that mediate ER stress responses, raising not only a growing interest for a pharmacological target in ER stress responses but also important questions how the ER-stress mediated effects induced by NSAIDs could be therapeutically advantageous or not. We review here the toxicity effects and therapeutic applications of NSAIDs involving the three majors ER stress arms namely PERK, IRE1, and ATF6. First, we provide brief introduction on the well-established and characterized downstream events mediated by these ER stress players, followed by presentation of the NSAIDs compounds and mode of action, and finally their effects on ER stress response. NSAIDs present promising drug agents targeting the components of ER stress in different aspects of cancer and other diseases, but a better comprehension of the mechanisms underlying their benefits and harms will certainly pave the road for several diseases’ therapy.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Ken-ichiro Tanaka ◽  
Misato Kasai ◽  
Mikako Shimoda ◽  
Ayane Shimizu ◽  
Maho Kubota ◽  
...  

Trace metals such as zinc (Zn), copper (Cu), and nickel (Ni) play important roles in various physiological functions such as immunity, cell division, and protein synthesis in a wide variety of species. However, excessive amounts of these trace metals cause disorders in various tissues of the central nervous system, respiratory system, and other vital organs. Our previous analysis focusing on neurotoxicity resulting from interactions between Zn and Cu revealed that Cu2+ markedly enhances Zn2+-induced neuronal cell death by activating oxidative stress and the endoplasmic reticulum (ER) stress response. However, neurotoxicity arising from interactions between zinc and metals other than copper has not been examined. Thus, in the current study, we examined the effect of Ni2+ on Zn2+-induced neurotoxicity. Initially, we found that nontoxic concentrations (0–60 μM) of Ni2+ enhance Zn2+-induced neurotoxicity in an immortalized hypothalamic neuronal cell line (GT1-7) in a dose-dependent manner. Next, we analyzed the mechanism enhancing neuronal cell death, focusing on the ER stress response. Our results revealed that Ni2+ treatment significantly primed the Zn2+-induced ER stress response, especially expression of the CCAAT-enhancer-binding protein homologous protein (CHOP). Finally, we examined the effect of carnosine (an endogenous peptide) on Ni2+/Zn2+-induced neurotoxicity and found that carnosine attenuated Ni2+/Zn2+-induced neuronal cell death and ER stress occurring before cell death. Based on our results, Ni2+ treatment significantly enhances Zn2+-induced neuronal cell death by priming the ER stress response. Thus, compounds that decrease the ER stress response, such as carnosine, may be beneficial for neurological diseases.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1692
Author(s):  
Theodora Panagaki ◽  
Elisa B. Randi ◽  
Csaba Szabo

It is estimated that over 1.5 billion people suffer from various forms of chronic liver disease worldwide. The emerging prevalence of metabolic syndromes and alcohol misuse, along with the lack of disease-modifying agents for the therapy of many severe liver conditions predicts that chronic liver disease will continue to be a major problem in the future. Better understanding of the underlying pathogenetic mechanisms and identification of potential therapeutic targets remains a priority. Herein, we explored the potential role of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide (H2S) system in the regulation of the endoplasmic reticulum (ER) stress and of its downstream processes in the immortalized hepatic cell line HepG2 in vitro. ER stress suppressed endogenous H2S levels and pharmacological supplementation of H2S with sodium hydrogen sulfide (NaHS) mitigated many aspects of ER stress, culminating in improved cellular bioenergetics and prevention of autophagic arrest, thereby switching cells’ fate towards survival. Genetic silencing of 3-MST or pharmacological inhibition of the key enzymes involved in hepatocyte H2S biosynthesis exacerbated many readouts related to ER-stress or its downstream functional responses. Our findings implicate the 3-MST/H2S system in the intracellular network that governs proteostasis and ER-stress adaptability in hepatocytes and reinforce the therapeutic potential of pharmacological H2S supplementation.


Sign in / Sign up

Export Citation Format

Share Document