scholarly journals Pathogenic Microbes Increase Plant Dependence on Arbuscular Mycorrhizal Fungi: A Meta-Analysis

2021 ◽  
Vol 12 ◽  
Author(s):  
Mingsen Qin ◽  
Jean-Pascal Miranda ◽  
Yun Tang ◽  
Wangrong Wei ◽  
Yongjun Liu ◽  
...  

Numerous studies have confirmed that arbuscular mycorrhizal fungi (AMF) can promote plant nitrogen and phosphorus absorption, and prime systemic plant defense to plant pathogenic microbes. Despite that, the information on the interaction between AMF and plant pathogenic microbes is limited, especially the influence of plant pathogenic microbes on the effect of AMF promoting plant growth. In this study, 650 independent paired-wise observations from 136 published papers were collected and used to calculate the different effect of AMF with plant pathogenic microbes (DAPP) in promoting plant growth through meta-analysis. The results showed that AMF had a higher effect size on plant growth with pathogenic microbes comparing to without pathogenic microbes, including the significant effects in shoot and total fresh biomass, and shoot, root, and total dry biomass. The results of the selection models revealed that the most important factor determining the DAPP on plant dry biomass was the harm level of plant pathogenic microbes on the plant dry biomass, which was negatively correlated. Furthermore, the change of AMF root length colonization (RLC) was the sub-important factor, which was positively correlated with the DAPP. Taken together, these results have implications for understanding the potential and application of AMF in agroecosystems.

Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


2014 ◽  
Vol 389 (1-2) ◽  
pp. 361-374 ◽  
Author(s):  
Haishui Yang ◽  
Qian Zhang ◽  
Yajun Dai ◽  
Qian Liu ◽  
Jianjun Tang ◽  
...  

2021 ◽  
Vol 8 (4) ◽  
pp. 2873-2880
Author(s):  
S Suharno ◽  
Retno Peni Sancayaningsih ◽  
Endang Sutariningsih Soetarto ◽  
Rina Sri Kasiamdari

The purpose of this research was to study the growth response of pokem (Setaria italica), which was inoculated by the arbuscular mycorrhizal fungi (AMF) from the tailings area. The method used in this research was a completely randomized design of factorial pattern. The factors consisted of AMF types (M)(M0: non-mycorrhizal, M1: Claroideoglomus etunicatum BGR, M2: C. lamellosum B1107S, M3: C. etunicatum L3101D), and inoculum density (I) (I: 5 g, II: 10 g per pot of planting media) with 8 replicates. The source of inoculum C. lamellosum B1107S and C. etunicatum L3101D originated from tailings in the gold mining area of Timika. The results showed that inoculation of C. etunicatum L3101D could increase the plant growth better than C. etunicatum BGR and C. lamellosum B1107S. Significant growth occurred on the parameters of the height of the plants, leaf area, dry weight and fresh weight of the plants, relative growth rate, and phosphorus absorption by the plants. The amount of nitrogen tended to decrease with AMF treatment, but it was not significant, whereas K has insiginificantly increased. The propagule density treatment increased plant growth on all parameters. The best growth occurred if the type C. etunicatum L3101D was inoculated with 10 g of propagule per planting media.


2019 ◽  
Vol 37 (2) ◽  
pp. 163
Author(s):  
Evangelina Esmeralda Quiñones Aguilar ◽  
Laura Verónica Hernández Cuevas ◽  
Luis López Pérez ◽  
Gabriel Rincón Enríquez

Arbuscular mycorrhizal fungi (AMF) are benef icial symbionts of most terrestrial plants. This symbiosis brings benef its to both symbionts. The plant involved in the symbiosis is supplied with nutrients by the fungus that promotes plant growth, in exchange for energy for reproduction of the AMF. In this context, the effectiveness of multi-specif ic AMF inocula from the rhizosphere of Agave cupreata from Michoacán, Mexico, in promoting the growth of papaya plants was evaluated. An experiment was carried out in ten random blocks with eleven treatments: eight consortiums of AMF, a commercial biofertilizer based on AMF (EndoMic®), a reference strain (Claroideoglomus claroideum) and a control without AMF. One hundred days after establishing the experiment, we evaluated the variables plant height, stem diameter, dry biomass of foliage, root and total, foliar area, relative index of mycorrhizal dependence, mycorrhizal colonization and density of mycorrhizal spores. The data were analyzed through an analysis of variance and correlation. The results showed that two of the consortiums promoted plant growth eff iciently; the plants inoculated with the consortiums AD-MTu and CM-MT signif icantly increased (Tukey, P ≤ 0.05) dry biomass by 240 and 225%, respectively, relative to the control without AMF, while with the biofertilizer EndoMic® the increase for the same variable was only 12%. It is concluded that the use of consortiums of AMF promotes the growth of papaya and therefore could be used in nurseries or greenhouses.


2015 ◽  
Vol 4 (2) ◽  
pp. 428-437 ◽  
Author(s):  
Rakiya Abdullahi ◽  
Lihan S ◽  
Edward R ◽  
Demie L S

Public concerned about food safety and quality have raised interest in manipulating soil nutrients management strategies that could reduce potential threat on environment and sustain food production. Recently, the application of arbuscular mycorrhizal fungi (AMF)as bio-fertilizer has gained recognition especially, in low-input agriculture. The fungi are known to improve plant nutrition and growth. However, this effect may differ according to soil properties and nutrients concentration. A greenhouse experiment was conducted to investigate the effect of AMF and poultry manure (PM) on growth and nutrients contents in maize compared to chemical fertilizer; and to determine the effect of soil properties on colonization potential of AMF. The experiment consists of 13 treatments combinations in 2 soil types (loam and peat), viz; 6 application rates of composted PM in tones (t) ha-1 (0, 4, 6, 8, 10 and 12) and 2 levels of AMF; inoculated (+AMF) and un-inoculated (-AMF) plus recommended dose of NPK (RD NPK). Un-inoculated plants showed no symptoms of root colonization and recorded no AMF spore under both soils. Addition of PM stimulated AMF colonization and sporulation, the highest root colonization (RC %) and spore counts were recorded at 8 t PM+AMF under loam and 12 t PM+AMF in peat soils. Shoot dry biomass at 8 and 12 t PM+AMF under loam and peat were comparable to RD NPK. Applying 8 and 12 t PM+AMF in loam and peat recorded the highest N& K comparable to RD NPK. However, P content in shoot were statistically higher at 8,10 & 12 t PM+AMF in loam and at 12 t PM+AMF in peat compared to RD NPK. Application of 10 & 12 t PM+AMF in loam significantly decreased plant growth, lowered AMF RC%, and nutrient content (N & K). There was a strong positive correlation between shoot dry biomass and RC % in loam (R2= 0.740 P<0.01) and peat (R2=0.884 P<0.01). From the results of this study, it could be concluded that AMF have increased the efficiency use of PM and their integration have the potential to improve plant growth due to enhanced nutrients  uptake and stimulated RC% in both soils. Results also indicated significantly higher shoot dry biomass, nutrients content (N, P, & K), spore counts and RC % in loam soil compared to peat, indicating that soil properties has a significant influence on effectiveness AMF. 


1999 ◽  
Vol 34 (6) ◽  
pp. 1018-1024 ◽  
Author(s):  
Elizabeth Ying Chu

With the objective of verifying the response of Euterpe oleracea seedlings to seven arbuscular mycorrhizal fungi species, an experimental trial was carried out under greenhouse conditions. Seeds of E. oleracea were sown in carbonized rice husk. Germinating seeds were initially transferred to plastic cups, containing fumigated Reddish Yellow Quartz Sand and inoculated with arbuscular mycorrhizal fungi. Two months later, seedlings were transferred to 2 kg black plastic bags, containing the same soil without fumigation. Plant growth and mineral nutrients were evaluated nine months after mycorrhizal inoculation. Differential effects were observed among the species tested, with Scutellispora gilmorei being the most effective ones in promoting growth and nutrient content of E. oleracea seedlings. The increment resulted from inoculation with S. gilmorei were 92% in total plant height, 116% in stem diameter, 361% in dry matter production, 191% in N, 664% in P, 46% in K, 562% in Ca, 363% in Mg and 350% in Zn contents, comparing to uninoculated controls. Infected root length was positively correlated to nutrient content and plant growth. It was concluded that growth and nutrient uptake of E. oleracea seedlings could be significantly improved by inoculation of effective arbuscular mycorrhizal fungi.


2012 ◽  
Vol 14 (4) ◽  
pp. 692-699 ◽  
Author(s):  
M.C. Arango ◽  
M.F. Ruscitti ◽  
M.G. Ronco ◽  
J. Beltrano

This study evaluated the effects of inoculation with the arbuscular mycorrhizal fungi Glomus mosseae, Glomus intraradices A4 and Glomus intraradices B1 and two phosphorus levels (10 and 40 mg kg-1) on root colonization, plant growth, nutrient uptake and essential oil content in Mentha piperita L. The experiment was carried out in a greenhouse, in 4x2 factorial arrangement, in completely randomized design. At sixty days after transplanting, the mycorrhizal plants had significantly higher fresh matter, dry matter and leaf area compared to non-mycorrhizal plants. The inoculation increased P, K and Ca levels in the shoot which were higher under 40 mg P kg-1 of soil. Plants grown with 40 mg P kg-1 soil increased the essential oil yield per plant by about 40-50% compared to those cultivated with 10 mg P kg-1, regardless of the mycorrhizal treatment. Among the studied fungal species, inoculation with G. intraradices A4 and a high level of P significantly increased plant growth and essential oil yield, compared to the other studied mycorrhizal fungal species. In conclusion, inoculation of arbuscular mycorrhizal fungi into peppermint plants is a feasible alternative to increase the essential oil production and reduce the use of fertilizers required to obtain economic production of peppermint under phosphorus-deficient soil condition.


Sign in / Sign up

Export Citation Format

Share Document