scholarly journals Editorial: The Role of Flower Color in Angiosperm Evolution

2021 ◽  
Vol 12 ◽  
Author(s):  
Eduardo Narbona ◽  
Montserrat Arista ◽  
Justen B. Whittall ◽  
Maria Gabriela Gutierrez Camargo ◽  
Mani Shrestha
PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e39010 ◽  
Author(s):  
Shun K. Hirota ◽  
Kozue Nitta ◽  
Yuni Kim ◽  
Aya Kato ◽  
Nobumitsu Kawakubo ◽  
...  

Ecology ◽  
2003 ◽  
Vol 84 (7) ◽  
pp. 1733-1743 ◽  
Author(s):  
Rebecca E. Irwin ◽  
Sharon Y. Strauss ◽  
Shonna Storz ◽  
Aimee Emerson ◽  
Genevieve Guibert

2020 ◽  
Vol 11 ◽  
Author(s):  
Ezgi Ogutcen ◽  
Karine Durand ◽  
Marina Wolowski ◽  
Laura Clavijo ◽  
Catherine Graham ◽  
...  

Changes in floral pigmentation can have dramatic effects on angiosperm evolution by making flowers either attractive or inconspicuous to different pollinator groups. Flower color largely depends on the type and abundance of pigments produced in the petals, but it is still unclear whether similar color signals rely on same biosynthetic pathways and to which extent the activation of certain pathways influences the course of floral color evolution. To address these questions, we investigated the physical and chemical aspects of floral color in the Neotropical Gesnerioideae (ca. 1,200 spp.), in which two types of anthocyanins, hydroxyanthocyanins, and deoxyanthocyanins, have been recorded as floral pigments. Using spectrophotometry, we measured flower reflectance for over 150 species representing different clades and pollination syndromes. We analyzed these reflectance data to estimate how the Gesnerioideae flowers are perceived by bees and hummingbirds using the visual system models of these pollinators. Floral anthocyanins were further identified using high performance liquid chromatography coupled to mass spectrometry. We found that orange/red floral colors in Gesnerioideae are produced either by deoxyanthocyanins (e.g., apigenidin, luteolinidin) or hydroxyanthocyanins (e.g., pelargonidin). The presence of deoxyanthocyanins in several lineages suggests that the activation of the deoxyanthocyanin pathway has evolved multiple times in the Gesnerioideae. The hydroxyanthocyanin-producing flowers span a wide range of colors, which enables them to be discriminated by hummingbirds or bees. By contrast, color diversity among the deoxyanthocyanin-producing species is lower and mainly represented at longer wavelengths, which is in line with the hue discrimination optima for hummingbirds. These results indicate that Gesnerioideae have evolved two different biochemical mechanisms to generate orange/red flowers, which is associated with hummingbird pollination. Our findings also suggest that the activation of the deoxyanthocyanin pathway has restricted flower color diversification to orange/red hues, supporting the potential constraining role of this alternative biosynthetic pathway on the evolutionary outcome of phenotypical and ecological diversification.


2020 ◽  
Vol 21 (21) ◽  
pp. 7960
Author(s):  
Sun-Hyung Lim ◽  
Bora Park ◽  
Da-Hye Kim ◽  
Sangkyu Park ◽  
Ju-Hee Yang ◽  
...  

Dihydroflavonol 4-reductase (DFR) catalyzes a committed step in anthocyanin and proanthocyanidin biosynthesis by reducing dihydroflavonols to leucoanthocyanidins. However, the role of this enzyme in determining flower color in the economically important crop chrysanthemum (Chrysanthemum morifolium Ramat.) is unknown. Here, we isolated cDNAs encoding DFR from two chrysanthemum cultivars, the white-flowered chrysanthemum “OhBlang” (CmDFR-OB) and the red-flowered chrysanthemum “RedMarble” (CmDFR-RM) and identified variations in the C-terminus between the two sequences. An enzyme assay using recombinant proteins revealed that both enzymes catalyzed the reduction of dihydroflavonol substrates, but CmDFR-OB showed significantly reduced DFR activity for dihydrokaempferol (DHK) substrate as compared with CmDFR-RM. Transcript levels of anthocyanin biosynthetic genes were consistent with the anthocyanin contents at different flower developmental stages of both cultivars. The inplanta complementation assay, using Arabidopsis thaliana dfr mutant (tt3-1), revealed that CmDFR-RM, but not CmDFR-OB, transgenes restored defective anthocyanin biosynthesis of this mutant at the seedling stage, as well as proanthocyanidin biosynthesis in the seed. The difference in the flower color of two chrysanthemums can be explained by the C-terminal variation of CmDFR combined with the loss of CmF3H expression during flower development.


Author(s):  
Yurong Li ◽  
Wenji Li ◽  
Di Hu ◽  
Ting Lei ◽  
Ping Shen ◽  
...  

2021 ◽  
Author(s):  
Yichun Qiu ◽  
Claudia Köhler

MADS-box transcription factors (TFs) are present in nearly all major eukaryotic groups. They are divided into Type I and Type II that differ in domain structure, functional roles, and rates of evolution. In flowering plants, major evolutionary innovations like flowers, ovules and fruits have been closely connected to Type II MADS-box TFs. The role of Type I MADS-box TFs in angiosperm evolution remains to be identified. Here, we show that the formation of angiosperm-specific Type I MADS-box clades of Mγ and Mγ-interacting Mα genes (Mα*) can be tracked back to the ancestor of all angiosperms. Angiosperm-specific Mγ and Mα* genes were preferentially expressed in the endosperm, consistent with their proposed function as heterodimers in the angiosperm-specific embryo-nourishing endosperm tissue. We propose that duplication and diversification of Type I MADS-genes underpins the evolution of the endosperm, a developmental innovation closely connected to the origin and success of angiosperms.


Sign in / Sign up

Export Citation Format

Share Document