scholarly journals Interhemispheric vs. stimulus-response spatial compatibility effects in bimanual reaction times to lateralized visual stimuli

2013 ◽  
Vol 4 ◽  
Author(s):  
Antonello Pellicano ◽  
Valeria Barna ◽  
Roberto Nicoletti ◽  
Sandro Rubichi ◽  
Carlo A. Marzi
2022 ◽  
Author(s):  
Annie Warman ◽  
Stephanie Rossit ◽  
George Law Malcolm ◽  
Allan Clark

It’s been repeatedly shown that pictures of graspable objects can facilitate visual processing and motor responses, even in the absence of reach-to-grasp actions, an effect often attributed the concept of affordances, originally introduced by Gibson (1979). A classic demonstration of this is the handle compatibility effect, which is characterised by faster reaction times when the orientation of a graspable object’s handle is compatible with the hand used to respond, even when the handle orientation is task irrelevant. Nevertheless, whether faster RTs are due to affordances or spatial compatibility effects has been significantly debated. In the proposed studies, we will use a stimulus-response compatibility paradigm to investigate firstly, whether we can replicate the handle compatibility effect while controlling for spatial compatibility. Here, participants will respond with left- or right-handed keypresses to whether the object is upright or inverted and, in separate blocks, whether the object is red or green. RTs will be analysed using repeated-measures ANOVAs. In line with an affordance account, we hypothesise that there will be larger handle compatibility effects for upright/inverted compared to colour judgements, as colour judgements do not require object identification and are not thought to elicit affordances. Secondly, we will investigate whether the handle compatibility effect shows a lower visual field (VF) advantage in line with functional lower VF advantages observed for hand actions. We expect larger handle compatibility effects for objects viewed in the lower VF than upper VF, given that the lower VF is the space where actions most frequently occur.


1954 ◽  
Vol 100 (419) ◽  
pp. 462-477 ◽  
Author(s):  
K. R. L. Hall ◽  
E. Stride

A number of studies on reaction time (R.T.) latency to visual and auditory stimuli in psychotic patients has been reported since the first investigations on the personal equation were carried out. The general trends from the work up to 1943 are well summarized by Hunt (1944), while Granger's (1953) review of “Personality and visual perception” contains a summary of the studies on R.T. to visual stimuli.


2018 ◽  
Vol 7 ◽  
pp. 172-177
Author(s):  
Łukasz Tyburcy ◽  
Małgorzata Plechawska-Wójcik

The paper describes results of comparison of reactions times to visual and auditory stimuli using EEG evoked potentials. Two experiments were used to applied. The first one explored reaction times to visual stimulus and the second one to auditory stimulus. After conducting an analysis of data, received results enable determining that visual stimuli evoke faster reactions than auditory stimuli.


1968 ◽  
Vol 27 (2) ◽  
pp. 447-450 ◽  
Author(s):  
Walter A. Busby ◽  
Donald E. Hurd

To determine the relationship between reading achievement and the reaction time of an individual responding to auditory and visual stimuli present in his perceptual field Ss were selected at random from Grades 2, 4 and 6. S lifted his finger from a key as rapidly as possible at the onset of any one of four stimuli (red or green light, high or low tone). Shifting reaction time was not independent of reaction time in either the auditory or visual channel. Hence, the possibility that relative perceptual difficulties could exist in shifting behavior while no defect existed in either single channel was not supported. Perception defined as the reaction time of an individual responding to auditory and visual stimuli was not significantly related to reading achievement.


1998 ◽  
Vol 87 (1) ◽  
pp. 175-185 ◽  
Author(s):  
René Arcelin ◽  
Didier Delignieres ◽  
Jeanick Brisswalter

The aim of the present study was to examine the effects of an exercise of moderate intensity (60% of maximal aerobic power) on specific information-processing mechanisms. 22 students completed 3 10-min. exercise bouts on a bicycle ergometer. Concomitantly, participants performed six manual choice-reaction tasks manipulating task variables (Signal Intensity, Stimulus–Response Compatibility, and Time Uncertainty) on two levels. Reaction tests, randomly ordered, were administered at rest and during exercise. A significant underadditive interaction between Time Uncertainty and exercise was found for the highest quartiles of the distribution of reaction times. No other interaction effects were obtained for the other variables. These results reasonably support that moderate aerobic exercise showed selective rather than general influences on information processing.


Brain ◽  
1971 ◽  
Vol 94 (3) ◽  
pp. 419-430 ◽  
Author(s):  
G. BERLUCCHI ◽  
W. HERON ◽  
R. HYMAN ◽  
G. RIZZOLATTI ◽  
C. UMILTÀ

1976 ◽  
Vol 42 (3) ◽  
pp. 767-770 ◽  
Author(s):  
Matti J. Saari ◽  
Bruce A. Pappas

The EKG was recorded while Ss differentially responded to auditory or visual stimuli in a reaction time task. The EKG record was analyzed by dividing each R-R interval encompassing a stimulus presentation into 9 equal phases. Reaction times were determined as a function of the phase encompassing stimulus onset while movement times were determined for the phase in which the response was initiated. Only reaction time significantly varied with cardiac cycle, with reactions during the second phase being slower than later phases.


2002 ◽  
Vol 55 (4) ◽  
pp. 1175-1191 ◽  
Author(s):  
Stefan Mattes ◽  
Hartmut Leuthold ◽  
Rolf Ulrich

Romaiguère, Hasbroucq, Possamaï, and Seal (1993) reported a new compatibility effect from a task that required responses of two different target force levels to stimuli of two different intensities. Reaction times were shorter when high and low stimulus intensities were mapped to strong and weak force presses respectively than when this mapping was reversed. We conducted six experiments to refine the interpretation of this effect. Experiments 1 to 4 demonstrated that the compatibility effect is clearly larger for auditory than for visual stimuli. Experiments 5 and 6 generalized this finding to a task where stimulus intensity was irrelevant. This modality difference refines Romaiguère et al.'s (1993) symbolic coding interpretation by showing that modality-specific codes underlie the intensity-force compatibility effect. Possible accounts in terms of differences in the representational mode and action effects are discussed.


1976 ◽  
Vol 19 (1) ◽  
pp. 141-155 ◽  
Author(s):  
Donald G. Brennan ◽  
Walter L. Cullinan

Thirty adult subjects learned to associate nonsense names varying in word length with nonsense visual stimuli varying in visual complexity. Simple reaction times (SRTs), visual duration thresholds (VDTs), matching response latencies (MRLs), and naming response latencies (NRLs) were then obtained from these subjects. The data indicate that SRTs, VDTs, and NRLs are significantly related to word length and that VDTs and NRLs are significantly related to visual complexity. There is also a tendency for MRLs to increase with increases in word length, particularly for “no” responses. However, the effects of word length on VDTs, MRLs, and NRLs may be confounded with the number of trials needed to learn the paired associates or with the number of overlearning trials. The data are consistent with an interpretation that motor planning or some form of implicit speech process may be a part of the total time required for the naming response.


Sign in / Sign up

Export Citation Format

Share Document