scholarly journals Predicting Crime and Other Uses of Neural Networks in Police Decision Making

2021 ◽  
Vol 12 ◽  
Author(s):  
Steven Walczak

Neural networks are a machine learning method that excel in solving classification and forecasting problems. They have also been shown to be a useful tool for working with big data oriented environments such as law enforcement. This article reviews and examines existing research on the utilization of neural networks for forecasting crime and other police decision making problem solving. Neural network models to predict specific types of crime using location and time information and to predict a crime’s location when given the crime and time of day are developed to demonstrate the application of neural networks to police decision making. The neural network crime prediction models utilize geo-spatiality to provide immediate information on crimes to enhance law enforcement decision making. The neural network models are able to predict the type of crime being committed 16.4% of the time for 27 different types of crime or 27.1% of the time when similar crimes are grouped into seven categories of crime. The location prediction neural networks are able to predict the zip code location or adjacent location 31.2% of the time.

2012 ◽  
Vol 6-7 ◽  
pp. 1055-1060 ◽  
Author(s):  
Yang Bing ◽  
Jian Kun Hao ◽  
Si Chang Zhang

In this study we apply back propagation Neural Network models to predict the daily Shanghai Stock Exchange Composite Index. The learning algorithm and gradient search technique are constructed in the models. We evaluate the prediction models and conclude that the Shanghai Stock Exchange Composite Index is predictable in the short term. Empirical study shows that the Neural Network models is successfully applied to predict the daily highest, lowest, and closing value of the Shanghai Stock Exchange Composite Index, but it can not predict the return rate of the Shanghai Stock Exchange Composite Index in short terms.


2021 ◽  
Vol 1 (1) ◽  
pp. 19-29
Author(s):  
Zhe Chu ◽  
Mengkai Hu ◽  
Xiangyu Chen

Recently, deep learning has been successfully applied to robotic grasp detection. Based on convolutional neural networks (CNNs), there have been lots of end-to-end detection approaches. But end-to-end approaches have strict requirements for the dataset used for training the neural network models and it’s hard to achieve in practical use. Therefore, we proposed a two-stage approach using particle swarm optimizer (PSO) candidate estimator and CNN to detect the most likely grasp. Our approach achieved an accuracy of 92.8% on the Cornell Grasp Dataset, which leaped into the front ranks of the existing approaches and is able to run at real-time speeds. After a small change of the approach, we can predict multiple grasps per object in the meantime so that an object can be grasped in a variety of ways.


Author(s):  
Joarder Kamruzzaman ◽  
Ruhul Sarker

The primary aim of this chapter is to present an overview of the artificial neural network basics and operation, architectures, and the major algorithms used for training the neural network models. As can be seen in subsequent chapters, neural networks have made many useful contributions to solve theoretical and practical problems in finance and manufacturing areas. The secondary aim here is therefore to provide a brief review of artificial neural network applications in finance and manufacturing areas.


2020 ◽  
Vol 10 (3) ◽  
pp. 766 ◽  
Author(s):  
Alec Wright ◽  
Eero-Pekka Damskägg ◽  
Lauri Juvela ◽  
Vesa Välimäki

This article investigates the use of deep neural networks for black-box modelling of audio distortion circuits, such as guitar amplifiers and distortion pedals. Both a feedforward network, based on the WaveNet model, and a recurrent neural network model are compared. To determine a suitable hyperparameter configuration for the WaveNet, models of three popular audio distortion pedals were created: the Ibanez Tube Screamer, the Boss DS-1, and the Electro-Harmonix Big Muff Pi. It is also shown that three minutes of audio data is sufficient for training the neural network models. Real-time implementations of the neural networks were used to measure their computational load. To further validate the results, models of two valve amplifiers, the Blackstar HT-5 Metal and the Mesa Boogie 5:50 Plus, were created, and subjective tests were conducted. The listening test results show that the models of the first amplifier could be identified as different from the reference, but the sound quality of the best models was judged to be excellent. In the case of the second guitar amplifier, many listeners were unable to hear the difference between the reference signal and the signals produced with the two largest neural network models. This study demonstrates that the neural network models can convincingly emulate highly nonlinear audio distortion circuits, whilst running in real-time, with some models requiring only a relatively small amount of processing power to run on a modern desktop computer.


2019 ◽  
Vol 14 (2) ◽  
pp. 158-164 ◽  
Author(s):  
G. Emayavaramban ◽  
A. Amudha ◽  
T. Rajendran ◽  
M. Sivaramkumar ◽  
K. Balachandar ◽  
...  

Background: Identifying user suitability plays a vital role in various modalities like neuromuscular system research, rehabilitation engineering and movement biomechanics. This paper analysis the user suitability based on neural networks (NN), subjects, age groups and gender for surface electromyogram (sEMG) pattern recognition system to control the myoelectric hand. Six parametric feature extraction algorithms are used to extract the features from sEMG signals such as AR (Autoregressive) Burg, AR Yule Walker, AR Covariance, AR Modified Covariance, Levinson Durbin Recursion and Linear Prediction Coefficient. The sEMG signals are modeled using Cascade Forward Back propagation Neural Network (CFBNN) and Pattern Recognition Neural Network. Methods: sEMG signals generated from forearm muscles of the participants are collected through an sEMG acquisition system. Based on the sEMG signals, the type of movement attempted by the user is identified in the sEMG recognition module using signal processing, feature extraction and machine learning techniques. The information about the identified movement is passed to microcontroller wherein a control is developed to command the prosthetic hand to emulate the identified movement. Results: From the six feature extraction algorithms and two neural network models used in the study, the maximum classification accuracy of 95.13% was obtained using AR Burg with Pattern Recognition Neural Network. This justifies that the Pattern Recognition Neural Network is best suited for this study as the neural network model is specially designed for pattern matching problem. Moreover, it has simple architecture and low computational complexity. AR Burg is found to be the best feature extraction technique in this study due to its high resolution for short data records and its ability to always produce a stable model. In all the neural network models, the maximum classification accuracy is obtained for subject 10 as a result of his better muscle fitness and his maximum involvement in training sessions. Subjects in the age group of 26-30 years are best suited for the study due to their better muscle contractions. Better muscle fatigue resistance has contributed for better performance of female subjects as compared to male subjects. From the single trial analysis, it can be observed that the hand close movement has achieved best recognition rate for all neural network models. Conclusion: In this paper a study was conducted to identify user suitability for designing hand prosthesis. Data were collected from ten subjects for twelve tasks related to finger movements. The suitability of the user was identified using two neural networks with six parametric features. From the result, it was concluded thatfit women doing regular physical exercises aged between 26-30 years are best suitable for developing HMI for designing a prosthetic hand. Pattern Recognition Neural Network with AR Burg extraction features using extension movements will be a better way to design the HMI. However, Signal acquisition based on wireless method is worth considering for the future.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2687
Author(s):  
Eun-Hun Lee ◽  
Hyeoncheol Kim

The significant advantage of deep neural networks is that the upper layer can capture the high-level features of data based on the information acquired from the lower layer by stacking layers deeply. Since it is challenging to interpret what knowledge the neural network has learned, various studies for explaining neural networks have emerged to overcome this problem. However, these studies generate the local explanation of a single instance rather than providing a generalized global interpretation of the neural network model itself. To overcome such drawbacks of the previous approaches, we propose the global interpretation method for the deep neural network through features of the model. We first analyzed the relationship between the input and hidden layers to represent the high-level features of the model, then interpreted the decision-making process of neural networks through high-level features. In addition, we applied network pruning techniques to make concise explanations and analyzed the effect of layer complexity on interpretability. We present experiments on the proposed approach using three different datasets and show that our approach could generate global explanations on deep neural network models with high accuracy and fidelity.


2021 ◽  
Vol 6 (2) ◽  
pp. 128-133
Author(s):  
Ihor Koval ◽  

The problem of finding objects in images using modern computer vision algorithms has been considered. The description of the main types of algorithms and methods for finding objects based on the use of convolutional neural networks has been given. A comparative analysis and modeling of neural network algorithms to solve the problem of finding objects in images has been conducted. The results of testing neural network models with different architectures on data sets VOC2012 and COCO have been presented. The results of the study of the accuracy of recognition depending on different hyperparameters of learning have been analyzed. The change in the value of the time of determining the location of the object depending on the different architectures of the neural network has been investigated.


2008 ◽  
Vol 575-578 ◽  
pp. 892-897 ◽  
Author(s):  
Wojciech Sitek ◽  
Jacek Trzaska ◽  
Leszek Adam Dobrzański

Basing on the experimental results of the hardenability investigations, which employed Jominy method, the model of the neural networks was developed and fully verified experimentally. The model makes it possible to obtain Jominy hardenability curves basing on the steel chemical composition. The modified hardenability curves calculation method is presented in the paper, initially developed by Tartaglia, Eldis, and Geissler, later extended by T. Inoue. The method makes use of the similarity of the Jominy curve to the hyperbolic secant function. The empirical formulae proposed by the authors make calculation of the hardenability curve possible basing on the chemical composition of the steel. However, regression coefficients characteristic for the particular steel grade must be known. Replacing some formulae by the neural network models is proposed in the paper.


Author(s):  
Joarder Kamruzzaman ◽  
Ruhul A. Sarker

The primary aim of this chapter is to present an overview of the artificial neural network basics and operation, architectures, and the major algorithms used for training the neural network models. As can be seen in subsequent chapters, neural networks have made many useful contributions to solve theoretical and practical problems in finance and manufacturing areas. The secondary aim here is therefore to provide a brief review of artificial neural network applications in finance and manufacturing areas.


2021 ◽  
Author(s):  
L Jakaite ◽  
M Ciemny ◽  
S Selitskiy ◽  
Vitaly Schetinin

Abstract A theory of Efficient Market Hypothesis (EMH) has been introduced by Fama to analyse financial markets. In particular the EMH theory has been proven in real cases under different conditions, including financial crises and frauds. The EMH assumes to examine the prediction accuracy of models designed on retrospective data. Such prediction models could be designed in different ways that motivated us to explore Machine Learning (ML) methods known for building models providing a high prediction performance. In this study we propose a ``deep'' learning method for building high-performance prediction models. The proposed method is based on the Group Method of Data Handling (GMDH) that is the deep learning paradigm capable of building multilayer neural-network models of a near-optimal complexity on given data. We show that the developed GMDH-type neural network has outperformed the models built by the conventional ML methods on the Warsaw Stock Exchange data. It is important that the complexity of the designed GMDH-type neural-networks is defined by the number of layers and connections between neurons. The performances of models were compared in terms of the prediction errors. We report a significantly smaller prediction error of the proposed method than that of the conventional autoregressive and "shallow’’ neural-network models. This finally allows us to conclude that traders will be advantaged by the proposed method.


Sign in / Sign up

Export Citation Format

Share Document