scholarly journals Self-Selected Motivational Music Enhances Physical Performance in Normoxia and Hypoxia in Young Healthy Males

2021 ◽  
Vol 12 ◽  
Author(s):  
Kate O’Keeffe ◽  
Jacob Dean ◽  
Simon Hodder ◽  
Alex Lloyd

Humans exposed to hypoxia are susceptible to physiological and psychological impairment. Music has ergogenic effects through enhancing psychological factors such as mood, emotion, and cognition. This study aimed to investigate music as a tool for mitigating the performance decrements observed in hypoxia. Thirteen males (mean ± SD; 24 ± 4 years) completed one familiarization session and four experimental trials; (1) normoxia (sea level, 0.209 FiO2) and no music; (2) normoxia (0.209 FiO2) with music; (3) normobaric hypoxia (∼3800 m, 0.13 FiO2) and no music; and (4) normobaric hypoxia (0.13 FiO2) with music. Experimental trials were completed at 21°C with 50% relative humidity. Music was self-selected prior to the familiarization session. Each experimental trial included a 15-min time trial on an arm bike, followed by a 60-s isometric maximal voluntary contraction (MVC) of the biceps brachii. Supramaximal nerve stimulation quantified central and peripheral fatigue with voluntary activation (VA%) calculated using the doublet interpolation method. Average power output (W) was reduced with a main effect of hypoxia (p = 0.02) and significantly increased with a main effect of music (p = 0.001). When combined the interaction was additive (p = 0.87). Average MVC force (N) was reduced in hypoxia (p = 0.03) but VA% of the biceps brachii was increased with music (p = 0.02). Music reduced subjective scores of mental effort, breathing discomfort, and arm discomfort in hypoxia (p < 0.001). Music increased maximal physical exertion through enhancing neural drive and diminishing detrimental mental processes, enhancing performance in normoxia (6.3%) and hypoxia (6.4%).

Motor Control ◽  
2021 ◽  
Vol 25 (2) ◽  
pp. 264-282
Author(s):  
Rihab Borji ◽  
Firas Zghal ◽  
Nidhal Zarrouk ◽  
Sonia Sahli ◽  
Haithem Rebai

The authors explored neuromuscular fatigue in athletes with intellectual disability (AID) compared with sedentary individuals with intellectual disability (SID) and individuals with typical development. Force, voluntary activation level, potentiated resting twitch, and electromyography signals were assessed during isometric maximal voluntary contractions performed before and immediately after an isometric submaximal exhaustive contraction (15% isometric maximal voluntary contractions) and during recovery period. AID presented shorter time to task failure than SID (p < .05). The three groups presented similar isometric maximal voluntary contraction decline and recovery kinetic. Both groups with intellectual disability presented higher voluntary activation level and root mean square normalized to peak-to-peak M-wave amplitude declines (p < .05) compared with individuals with typical development. These declines were more pronounced in SID (p < .05) than in AID. The AID recovered their initial voluntary activation level later than controls, whereas SID did not. SID presented lower potentiated resting twitch decline compared with AID and controls with faster recovery (p < .05). AID presented attenuated central fatigue and accentuated peripheral fatigue compared with their sedentary counterparts, suggesting a neuromuscular profile close to that of individuals with typical development.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10388
Author(s):  
Miloš Kalc ◽  
Ramona Ritzmann ◽  
Vojko Strojnik

Background Whole body vibrations have been used as an exercise modality or as a tool to study neuromuscular integration. There is increasing evidence that longer WBV exposures (up to 10 minutes) induce an acute impairment in neuromuscular function. However, the magnitude and origin of WBV induced fatigue is poorly understood. Purpose The study aimed to investigate the magnitude and origin of neuromuscular fatigue induced by half-squat long-exposure whole-body vibration intervention (WBV) with sets of different duration and compare it to non-vibration (SHAM) conditions. Methods Ten young, recreationally trained adults participated in six fatiguing trials, each consisting of maintaining a squatting position for several sets of the duration of 30, 60 or 180 seconds. The static squatting was superimposed with vibrations (WBV30, WBV60, WBV180) or without vibrations (SHAM30, SHAM60, SHAM180) for a total exercise exposure of 9-minutes in each trial. Maximum voluntary contraction (MVC), level of voluntary activation (%VA), low- (T20) and high-frequency (T100) doublets, low-to-high-frequency fatigue ratio (T20/100) and single twitch peak torque (TWPT) were assessed before, immediately after, then 15 and 30 minutes after each fatiguing protocol. Result Inferential statistics using RM ANOVA and post hoc tests revealed statistically significant declines from baseline values in MVC, T20, T100, T20/100 and TWPT in all trials, but not in %VA. No significant differences were found between WBV and SHAM conditions. Conclusion Our findings suggest that the origin of fatigue induced by WBV is not significantly different compared to control conditions without vibrations. The lack of significant differences in %VA and the significant decline in other assessed parameters suggest that fatiguing protocols used in this study induced peripheral fatigue of a similar magnitude in all trials.


2021 ◽  
Author(s):  
Donguk Jo ◽  
Miriam Goubran ◽  
Martin Bilodeau

The main aim of this study was to determine sex differences in central and peripheral fatigue produced by a sustained isometric exercise of ankle plantar flexors in healthy young adults. Ten males and fourteen females performed a sustained isometric ankle exercise until task failure. Maximal voluntary isometric contraction torque (plantarflexion), voluntary activation level (using the twitch interpolation technique), and twitch contractile properties (twitch peak torque, twitch half relaxation time, and low frequency fatigue index) were measured before, immediately after, and throughout a recovery period (1, 2, 5, and 10 min) following the exercise protocol in order to characterize neuromuscular fatigue. Fatigue had a significant effect (p £ 0.05) on all dependent variables. Other than for the maximal voluntary contraction torque, where males showed a greater fatigue-related decrease than females, males and females showed generally similar changes with fatigue. Altogether, our findings indicate no major differences in central or peripheral fatigue mechanisms between males and females to explain a somewhat greater fatigability in males.


2014 ◽  
Vol 39 (7) ◽  
pp. 781-786 ◽  
Author(s):  
Catriona A. Burdon ◽  
Christopher S. Easthope ◽  
Nathan A. Johnson ◽  
Phillip G. Chapman ◽  
Helen O’Connor

This study aimed to investigate the effect of exercise-induced hyperthermia on central fatigue and force decline in exercised and nonexercised muscles and whether ingestion of ice slushy (ICE) ameliorates fatigue. Eight participants (5 males, 3 females) completed 45 s maximal voluntary isometric contractions (MVIC) with elbow flexors and knee extensors at baseline and following an exercise-induced rectal temperature (Trec) of 39.3 ± 0.2 °C. Percutaneous electrical muscle stimulation was superimposed at 15, 30 and 44 s during MVICs to assess muscle activation. To increase Trec to 39.3 °C, participants cycled at 60% maximum power output for 42 ± 11 min in 40 °C and 50% relative humidity. Immediately prior to each MVIC, participants consumed 50 g of ICE (–1 °C) or thermoneutral drink (38 °C, CON) made from 7.4% carbohydrate beverage. Participants consumed water (19 °C) during exercise to prevent hypohydration. Voluntary muscle force production and activation in both muscle groups were unchanged at Trec 39.3 °C with ICE (knee extensors: 209 ± 152 N) versus CON (knee extensors: 255 ± 157 N, p = 0.19). At Trec 39.3 °C, quadriceps mean force (232 ± 151 N) decreased versus baseline (302 ± 180 N, p < 0.001) and mean voluntary activation was also decreased (by 15% ± 11%, p < 0.001). Elbow flexor mean force decreased from 179 ± 67 N to 148 ± 65 N when Trec was increased to 39.3 °C (p < 0.001) but mean voluntary activation was not reduced at 39.3 °C (5% ± 25%, p = 0.79). After exercise-induced hyperthermia, ICE had no effect on voluntary activation or force production; however, both were reduced from baseline in the exercised muscle group. Peripheral fatigue was greater than the central component and limited the ability of an intervention designed to alter central fatigue.


2012 ◽  
Vol 113 (2) ◽  
pp. 215-223 ◽  
Author(s):  
Mark Burnley ◽  
Anni Vanhatalo ◽  
Andrew M. Jones

Whether the transition in fatigue processes between “low-intensity” and “high-intensity” contractions occurs gradually, as the torque requirements are increased, or whether this transition occurs more suddenly at some identifiable “threshold”, is not known. We hypothesized that the critical torque (CT; the asymptote of the torque-duration relationship) would demarcate distinct profiles of central and peripheral fatigue during intermittent isometric quadriceps contractions (3-s contraction, 2-s rest). Nine healthy men performed seven experimental trials to task failure or for up to 60 min, with maximal voluntary contractions (MVCs) performed at the end of each minute. The first five trials were performed to determine CT [∼35–55% MVC, denoted severe 1 (S1) to severe 5 (S5) in ascending order], while the remaining two trials were performed 10 and 20% below the CT (denoted CT-10% and CT-20%). Dynamometer torque and the electromyogram of the right vastus lateralis were sampled continuously. Peripheral and central fatigue was determined from the fall in potentiated doublet torque and voluntary activation, respectively. Above CT, contractions progressed to task failure in ∼3–18 min, at which point the MVC did not differ from the target torque (S1 target, 88.7 ± 4.3 N·m vs. MVC, 89.3 ± 8.8 N·m, P = 0.94). The potentiated doublet fell significantly in all trials, and voluntary activation was reduced in trials S1–S3, but not trials S4 and S5. Below CT, contractions could be sustained for 60 min on 17 of 18 occasions. Both central and peripheral fatigue developed, but there was a substantial reserve in MVC torque at the end of the task. The rate of global and peripheral fatigue development was four to five times greater during S1 than during CT-10% (change in MVC/change in time S1 vs. CT-10%: −7.2 ± 1.4 vs. −1.5 ± 0.4 N·m·min−1). These results demonstrate that CT represents a critical threshold for neuromuscular fatigue development.


1986 ◽  
Vol 60 (4) ◽  
pp. 1179-1185 ◽  
Author(s):  
T. Moritani ◽  
M. Muro ◽  
A. Nagata

Twelve male subjects were tested to determine the effects of motor unit (MU) recruitment and firing frequency on the surface electromyogram (EMG) frequency power spectra during sustained maximal voluntary contraction (MVC) and 50% MVC of the biceps brachii muscle. Both the intramuscular MU spikes and surface EMG were recorded simultaneously and analyzed by means of a computer-aided intramuscular spike amplitude-frequency histogram and frequency power spectral analysis, respectively. Results indicated that both mean power frequency (MPF) and amplitude (rmsEMG) of the surface EMG fell significantly (P less than 0.001) together with a progressive reduction in MU spike amplitude and firing frequency during sustained MVC. During 50% MVC there was a significant decline in MPF (P less than 0.001), but this decline was accompanied by a significant increase in rmsEMG (P less than 0.001) and a progressive MU recruitment as evidenced by an increased number of MUs with relatively large spike amplitude. Our data suggest that the surface EMG amplitude could better represent the underlying MU activity during muscle fatigue and the frequency powers spectral shift may or may not reflect changes in MU recruitment and rate-coding patterns.


2017 ◽  
Vol 118 (6) ◽  
pp. 3242-3251 ◽  
Author(s):  
Brandon Wayne Collins ◽  
Edward W. J. Cadigan ◽  
Lucas Stefanelli ◽  
Duane C. Button

The purpose of this study was to examine the effect of shoulder position on corticospinal excitability (CSE) of the biceps brachii during rest and a 10% maximal voluntary contraction (MVC). Participants ( n = 9) completed two experimental sessions with four conditions: 1) rest, 0° shoulder flexion; 2) 10% MVC, 0° shoulder flexion; 3) rest, 90° shoulder flexion; and 4) 10% MVC, 90° shoulder flexion. Transcranial magnetic, transmastoid electrical, and Erb’s point stimulation were used to induce motor-evoked potentials (MEPs), cervicomedullary MEPs (CMEPs), and maximal muscle compound potentials (Mmax), respectively, in the biceps brachii in each condition. At rest, MEP, CMEP, and Mmax amplitudes increased ( P < 0.01) by 509.7 ± 118.3%, 113.3 ± 28.3%, and 155.1 ± 47.9%, respectively, at 90° compared with 0°. At 10% MVC, MEP amplitudes did not differ ( P = 0.08), but CMEP and Mmax amplitudes increased ( P < 0.05) by 32.3 ± 10.5% and 127.9 ± 26.1%, respectively, at 90° compared with 0°. MEP/Mmax increased ( P < 0.01) by 224.0 ± 99.1% at rest and decreased ( P < 0.05) by 51.3 ± 6.7% at 10% MVC at 90° compared with 0°. CMEP/Mmax was not different ( P = 0.22) at rest but decreased ( P < 0.01) at 10% MVC by 33.6 ± 6.1% at 90° compared with 0°. EMG increased ( P < 0.001) by 8.3 ± 2.0% at rest and decreased ( P < 0.001) by 21.4 ± 4.4% at 10% MVC at 90° compared with 0°. In conclusion, CSE of the biceps brachii was dependent on shoulder position, and the pattern of change was altered within the state in which it was measured. The position-dependent changes in Mmax amplitude, EMG, and CSE itself all contribute to the overall change in CSE of the biceps brachii. NEW & NOTEWORTHY We demonstrate that when the shoulder is placed into two common positions for determining elbow flexor force and activation, corticospinal excitability (CSE) of the biceps brachii is both shoulder position and state dependent. At rest, when the shoulder is flexed from 0° to 90°, supraspinal factors predominantly alter CSE, whereas during a slight contraction, spinal factors predominantly alter CSE. Finally, the normalization techniques frequently used by researchers to investigate CSE may under- and overestimate CSE when shoulder position is changed.


2004 ◽  
Vol 97 (5) ◽  
pp. 1693-1701 ◽  
Author(s):  
C. J. de Ruiter ◽  
R. D. Kooistra ◽  
M. I. Paalman ◽  
A. de Haan

We investigated the capacity for torque development and muscle activation at the onset of fast voluntary isometric knee extensions at 30, 60, and 90° knee angle. Experiments were performed in subjects ( n = 7) who had high levels (>90%) of activation at the plateau of maximal voluntary contractions. During maximal electrical nerve stimulation (8 pulses at 300 Hz), the maximal rate of torque development (MRTD) and torque time integral over the first 40 ms (TTI40) changed in proportion with torque at the different knee angles (highest values at 60°). At each knee angle, voluntary MRTD and stimulated MRTD were similar ( P < 0.05), but time to voluntary MRTD was significantly longer. Voluntary TTI40 was independent ( P > 0.05) of knee angle and on average (all subjects and angles) only 40% of stimulated TTI40. However, among subjects, the averaged (across knee angles) values ranged from 10.3 ± 3.1 to 83.3 ± 3.2% and were positively related ( r2 = 0.75, P < 0.05) to the knee-extensor surface EMG at the start of torque development. It was concluded that, although all subjects had high levels of voluntary activation at the plateau of maximal voluntary contraction, among subjects and independent of knee angle, the capacity for fast muscle activation varied substantially. Moreover, in all subjects, torque developed considerably faster during maximal electrical stimulation than during maximal voluntary effort. At different knee angles, stimulated MRTD and TTI40 changed in proportion with stimulated torque, but voluntary MRTD and TTI40 changed less than maximal voluntary torque.


Sign in / Sign up

Export Citation Format

Share Document