scholarly journals Reactive Astrocytes: Critical Players in the Development of Chronic Pain

2021 ◽  
Vol 12 ◽  
Author(s):  
James Tang ◽  
Mercedes Bair ◽  
Giannina Descalzi

Chronic pain is associated with long term plasticity of nociceptive pathways in the central nervous system. Astrocytes can profoundly affect synaptic function and increasing evidence has highlighted how altered astrocyte activity may contribute to the pathogenesis of chronic pain. In response to injury, astrocytes undergo a shift in form and function known as reactive astrogliosis, which affects their release of cytokines and gliotransmitters. These neuromodulatory substances have been implicated in driving the persistent changes in central nociceptive activity. Astrocytes also release lactate which neurons can use to produce energy during synaptic plasticity. Furthermore, recent research has provided insight into lactate's emerging role as a signaling molecule in the central nervous system, which may be involved in directly modulating neuronal and astrocytic activity. In this review, we present evidence for the involvement of astrocyte-derived tumor necrosis factor alpha in pain-associated plasticity, in addition to research suggesting the potential involvement of gliotransmitters D-serine and adenosine-5′-triphosphate. We also discuss work implicating astrocyte-neuron metabolic coupling, and the possible role of lactate, which has been sparsely studied in the context of chronic pain, in supporting pathological changes in central nociceptive activity.

1992 ◽  
Vol 176 (1) ◽  
pp. 255-259 ◽  
Author(s):  
P B Andersson ◽  
V H Perry ◽  
S Gordon

Neither excitotoxic neurodegeneration nor lipopolysaccharide induces an acute myelomonocytic exudate in the murine central nervous system (CNS) parenchyma (Andersson, P.-B., V. H. Perry, and S. Gordon. 1991. Neuroscience, 42:201; Andersson, P.-B., V. H. Perry, and S. Gordon. 1992. Neuroscience 48:169). In this study formyl-methionyl-leucyl-phenylalanine, platelet-activating factor, interleukin 8 (IL-8), IL-1, or tumor necrosis factor alpha were injected into the hippocampus to assess whether these leukocyte chemotaxins and known mediators of recruitment could bypass this block. They induced morphologic activation of microglia and widespread leukocyte margination but little or no cell exudation into the CNS parenchyma. By contrast, there was acute myelomonocytic cell recruitment to the choroid plexus, meninges, and ventricular system, comparable to that in the skin after subcutaneous injection. The normal CNS parenchyma appears to be a tissue unique in its resistance to leukocyte diapedesis, which is shown here to be at a step beyond chemotactic cytokine secretion or induction of leukocyte adhesion to cerebral endothelium.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 353
Author(s):  
Yueh-Sheng Chen ◽  
Shih-Sheng Chang ◽  
Hooi Yee Ng ◽  
Yu-Xuan Huang ◽  
Chien-Chang Chen ◽  
...  

The peripheral nervous system is the bridge of communication between the central nervous system and other body systems. Autologous nerve grafting is the mainstream method for repair of nerve lesions greater than 20 mm. However, there are several disadvantages and limitations of autologous nerve grafting, thus prompting the need for fabrication of nerve conduits for clinical use. In this study, we successfully fabricated astragaloside (Ast)-containing polyurethane (PU) nerve guidance conduits via digital light processing, and it was noted that the addition of Ast improved the hydrophilicity of traditional PU conduits by at least 23%. The improved hydrophilicity not only led to enhanced cellular proliferation of rat Schwann cells, we also noted that levels of inflammatory markers tumor necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2) significantly decreased with increasing concentrations of Ast. Furthermore, the levels of neural regeneration markers were significantly enhanced with the addition of Ast. This study demonstrated that Ast-containing PU nerve conduits can be potentially used as an alternative solution to regenerate peripheral nerve injuries.


Sign in / Sign up

Export Citation Format

Share Document