scholarly journals Bacteriological Quality and Heavy Metal Analysis of Packaged Water Produced in Lusaka, Zambia and Associated Quality Control Measures

2021 ◽  
Vol 9 ◽  
Author(s):  
Rodney K. Banda ◽  
Patricia Mubita ◽  
Given Moonga ◽  
Chisala D. Meki

Many people in the world lack safe basic drinking water sources and rely on untreated water source. Packaged water can be considered as an alternative to other water sources if measures are put in place to ensure its safety for consumption. This study aimed to assess the bacteriological quality and heavy metal analysis of packaged water produced in Lusaka, Zambia and associated quality control measures. A cross-sectional study was conducted in May 2019 where 18 brands of packaged water were analyzed for total and fecal coliforms as well as concentrations of Lead, Chromium, and Cadmium. The study found that 33.5% of the packaged water produced in Lusaka did not comply with the standard for drinking water on bacteriological quality. We also found that the concentrations for Lead were <0.01 mg/l in all the 17 samples, thus compliant to WHO/ZABS standards. Concentrations of Chromium were between 0.002 and 0.62 mg/l and compliance to the standard was 11.8%. Concentrations for Cadmium were between 0.009 and 0.2 mg/l against the acceptable concentration of <0.003 mg/l. Most brands of the packaged water did not conform to the standards for drinking water.

2021 ◽  
Vol 15 ◽  
pp. 117863022110264
Author(s):  
Zemachu Ashuro ◽  
Mekonnen Birhanie Aregu ◽  
Girum Gebremeskel Kanno ◽  
Belay Negassa ◽  
Negasa Eshete Soboksa ◽  
...  

Background: Providing safe and adequate Water, Sanitation and Hygiene (WASH) services in response to emergencies is a major problem. Globally, few studies have investigated the bacteriological quality of drinking water at the IDP sites. Therefore, the objective of this study was to evaluate the bacteriological quality of drinking water and associated factors at the IDP sites of Gedeo zone. Methods: A cross-sectional study was conducted on 213 water samples collected from November to December 2018. The membrane filter technique was used to retain bacteria and lauryl sulphate broth media was used to detect faecal coliforms. After incubation of 14 hours at 44°C, faecal coliforms with yellow colonies were counted and expressed in terms of CFU/100 ml of water. The data were entered into Epi data version 3.1 and exported to STATA version 14 for analysis. Binary logistic regression analysis with 95%CI and P ⩽ .05 was used to identify factors associated with an outcome variable. Results: Out of 213 water samples collected, 107 (50.2%) samples were tested positive for faecal coliforms. The presence of latrines in uphill (AOR: 6.7, 95%CI: 1.0-42.9), other sources of pollution (AOR: 5.0, 95%CI: 1.1-22.3), inadequate fencing (AOR: 7.1, 95%CI: 1.3-40.2) and lack of diversion ditch (AOR: 6.3, 95%CI: 1.0-37.6) were factors significantly associated with faecal contamination of springs. Dug wells that had a latrine within 10 m (AOR: 11.4, 95%CI: 1.8-72.1), other pollution sources within 10 m (AOR: 7.9, 95%CI: 1.9-32.4), inadequate fencing (AOR: 2.8, 95%CI: 1.0-7.9), drawing water using a bucket with rope (AOR: 7.3, 95%CI: 1.6-33.4) and unsanitary well cover (AOR: 3.4, 95%CI: 1.1-10.4) were factors significantly associated with faecal contamination of wells. Conclusions: The majority of the water sources in internally displaced people sites were tested positive for faecal coliforms. The presence of latrine in uphill, other sources of pollution, inadequate fencing, lack of diversion ditch, drawing water using a bucket with rope and unsanitary well cover were factors associated with the presence of faecal coliforms. Therefore, adequate fencing, proper diversion ditch construction and hygiene promotion should be done to protect water sources from faecal contamination. Furthermore, latrines and other point sources of contamination should be located at least 10 m away or at a lower elevation from water sources.


2016 ◽  
Vol 171 (2) ◽  
pp. 217-222 ◽  
Author(s):  
A. Kumar ◽  
M. Kaur ◽  
S. Sharma ◽  
R. Mehra ◽  
D. K. Sharma ◽  
...  

2020 ◽  
Vol 71 (8) ◽  
pp. 240-248
Author(s):  
Kafeel Ahmad ◽  
Yongjun Yang ◽  
Zafar Iqbal Khan ◽  
Nimra Arshad ◽  
Tasneem Ahmad ◽  
...  

The article is focused on estimation of Zinc in the roadside forages, and blood of buffaloes feeding on these forages. This study was carried out in Sargodha during December 2015 to January 2016 (winter) and May 2016 to June 2016 (summer). Five road sites (Mateela, Faisalabad roadside, Shaheenabad roadside, Bhalwal roadside and 50 chak) were selected from sampling of forages, soil and buffalo blood sample. Heavy metal analysis of all digested samples was done with atomic absorption spectrophotometer. Analysis of variance and correlation was done with two way ANOVA. This study regarding the accumulation of zinc in forages, soil and the buffalo blood would help the authorities to exactly determine the agents which are responsible for increasing pollution in the environment.


2017 ◽  
Vol 11 ◽  
pp. 117863021773553 ◽  
Author(s):  
Joab Odhiambo Okullo ◽  
Wilkister Nyaora Moturi ◽  
George Morara Ogendi

2014 ◽  
Vol 97 (2) ◽  
pp. 567-572 ◽  
Author(s):  
Patsy Root ◽  
Margo Hunt ◽  
Karla Fjeld ◽  
Laurie Kundrat

Abstract Quality assurance (QA) and quality control (QC) data are required in order to have confidence in the results from analytical tests and the equipment used to produce those results. Some AOAC water methods include specific QA/QC procedures, frequencies, and acceptance criteria, but these are considered to be the minimum controls needed to perform a microbiological method successfully. Some regulatory programs, such as those at Code of Federal Regulations (CFR), Title 40, Part 136.7 for chemistry methods, require additional QA/QC measures beyond those listed in the method, which can also apply to microbiological methods. Essential QA/QC measures include sterility checks, reagent specificity and sensitivity checks, assessment of each analyst's capabilities, analysis of blind check samples, and evaluation of the presence of laboratory contamination and instrument calibration and checks. The details of these procedures, their performance frequency, and expected results are set out in this report as they apply to microbiological methods. The specific regulatory requirements of CFR Title 40 Part 136.7 for the Clean Water Act, the laboratory certification requirements of CFR Title 40 Part 141 for the Safe Drinking Water Act, and the International Organization for Standardization 17025 accreditation requirements under The NELAC Institute are also discussed.


Sign in / Sign up

Export Citation Format

Share Document