scholarly journals Adjusting Reported COVID-19 Deaths for the Prevailing Routine Death Surveillance in India

2021 ◽  
Vol 9 ◽  
Author(s):  
Hemant Deepak Shewade ◽  
Giridara Gopal Parameswaran ◽  
Archisman Mazumder ◽  
Mohak Gupta

In India, the “low mortality” narrative based on the reported COVID-19 deaths may be causing more harm than benefit. The extent to which COVID-19 deaths get reported depends on the coverage of routine death surveillance [death registration along with medical certification of cause of death (MCCD)] and the errors in MCCD. In India, the coverage of routine death surveillance is 18.1%. This is compounded by the fact that COVID-19 death reporting is focused among reported cases and the case detection ratio is low. To adjust for the coverage of routine death surveillance and errors in MCCD, we calculated a correction (multiplication) factor at national and state level to produce an estimated number of COVID-19 deaths. As on July 31, 2020, we calculated the infection fatality ratio (IFR) for India (0.58:100–1.16:100) using these estimated COVID-19 deaths; this is comparable with the IFR range in countries with near perfect routine death surveillance. We recommend the release of excess deaths data during COVID-19 (at least in states with high death registration) and post-mortem COVID-19 testing as a surveillance activity for a better understanding of under-reporting. In its absence, we should adjust reported COVID-19 deaths for the coverage of routine death surveillance and errors in MCCD. This way we will have a clear idea of the true burden of deaths and our public health response will never be inadequate. We recommend that “reported” or “estimated” is added before the COVID-19 death data and related indicators for better clarity and interpretation.

2020 ◽  
Author(s):  
Aliea M. Jalali ◽  
Brent M. Peterson ◽  
Thushara Galbadage

The Coronavirus disease 2019 (COVID-19) pandemic has elicited an abrupt pause in the United States in multiple sectors of commerce and social activity. As the US faces this health crisis, the magnitude, and rigor of their initial public health response was unprecedented. As a response, the entire nation shutdown at the state-level for the duration of approximately one to three months. These public health interventions, however, were not arbitrarily decided, but rather, implemented as a result of evidence-based practices. These practices were a result of lessons learned during the 1918 influenza pandemic and the city-level non-pharmaceutical interventions (NPIs) taken across the US. During the 1918 pandemic, two model cities, St. Louis, MO, and Philadelphia, PA, carried out two different approaches to address the spreading disease, which resulted in two distinctly different outcomes. Our group has evaluated the state-level public health response adopted by states across the US, with a focus on New York, California, Florida, and Texas, and compared the effectiveness of reducing the spread of COVID-19. Our assessments show that while the states mentioned above benefited from the implementations of early preventative measures, they inadequately replicated the desired outcomes observed in St. Louis during the 1918 crisis. Our study indicates that there are other factors, including health disparities that may influence the effectiveness of public health interventions applied. Identifying more specific health determinants may help implement targeted interventions aimed at preventing the spread of COVID-19 and improving health equity.


2020 ◽  
Vol 17 (S1) ◽  
pp. 128-138 ◽  
Author(s):  
Rebecca E. Ford-Paz ◽  
Catherine DeCarlo Santiago ◽  
Claire A. Coyne ◽  
Claudio Rivera ◽  
Sisi Guo ◽  
...  

Author(s):  
Joshua M. Sharfstein

Issues of responsibility and blame are very rarely discussed in public health training, but are seldom forgotten in practice. Blame often follows a crisis, and leaders of health agencies should be able to think strategically about how to handle such accusations before being faced with the pain of dealing with them. When the health agency is not at all at fault, officials can make the case for a strong public health response without reservation. When the agency is entirely to blame, a quick and sincere apology can allow the agency to retain credibility. The most difficult situation is when the agency is partly to blame. The goal in this situation is to accept the appropriate amount of blame while working quickly to resolve the crisis.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Seth Commichaux ◽  
Kiran Javkar ◽  
Padmini Ramachandran ◽  
Niranjan Nagarajan ◽  
Denis Bertrand ◽  
...  

Abstract Background Whole genome sequencing of cultured pathogens is the state of the art public health response for the bioinformatic source tracking of illness outbreaks. Quasimetagenomics can substantially reduce the amount of culturing needed before a high quality genome can be recovered. Highly accurate short read data is analyzed for single nucleotide polymorphisms and multi-locus sequence types to differentiate strains but cannot span many genomic repeats, resulting in highly fragmented assemblies. Long reads can span repeats, resulting in much more contiguous assemblies, but have lower accuracy than short reads. Results We evaluated the accuracy of Listeria monocytogenes assemblies from enrichments (quasimetagenomes) of naturally-contaminated ice cream using long read (Oxford Nanopore) and short read (Illumina) sequencing data. Accuracy of ten assembly approaches, over a range of sequencing depths, was evaluated by comparing sequence similarity of genes in assemblies to a complete reference genome. Long read assemblies reconstructed a circularized genome as well as a 71 kbp plasmid after 24 h of enrichment; however, high error rates prevented high fidelity gene assembly, even at 150X depth of coverage. Short read assemblies accurately reconstructed the core genes after 28 h of enrichment but produced highly fragmented genomes. Hybrid approaches demonstrated promising results but had biases based upon the initial assembly strategy. Short read assemblies scaffolded with long reads accurately assembled the core genes after just 24 h of enrichment, but were highly fragmented. Long read assemblies polished with short reads reconstructed a circularized genome and plasmid and assembled all the genes after 24 h enrichment but with less fidelity for the core genes than the short read assemblies. Conclusion The integration of long and short read sequencing of quasimetagenomes expedited the reconstruction of a high quality pathogen genome compared to either platform alone. A new and more complete level of information about genome structure, gene order and mobile elements can be added to the public health response by incorporating long read analyses with the standard short read WGS outbreak response.


Sign in / Sign up

Export Citation Format

Share Document