scholarly journals The Role of Decidual Subpopulations in Implantation, Menstruation and Miscarriage

2021 ◽  
Vol 3 ◽  
Author(s):  
Joanne Muter ◽  
Chow-Seng Kong ◽  
Jan J. Brosens

In each menstrual cycle, the endometrium becomes receptive to embryo implantation while preparing for tissue breakdown and repair. Both pregnancy and menstruation are dependent on spontaneous decidualization of endometrial stromal cells, a progesterone-dependent process that follows rapid, oestrogen-dependent proliferation. During the implantation window, stromal cells mount an acute stress response, which leads to the emergence of functionally distinct decidual subsets, reflecting the level of replication stress incurred during the preceding proliferative phase. Progesterone-dependent, anti-inflammatory decidual cells (DeC) form a robust matrix that accommodates the conceptus whereas pro-inflammatory, progesterone-resistant stressed and senescent decidual cells (senDeC) control tissue remodelling and breakdown. To execute these functions, each decidual subset engages innate immune cells: DeC partner with uterine natural killer (uNK) cells to eliminate senDeC, while senDeC co-opt neutrophils and macrophages to assist with tissue breakdown and repair. Thus, successful transformation of cycling endometrium into the decidua of pregnancy not only requires continuous progesterone signalling but dominance of DeC over senDeC, aided by recruitment and differentiation of circulating NK cells and bone marrow-derived decidual progenitors. We discuss how the frequency of cycles resulting in imbalanced decidual subpopulations may determine the recurrence risk of miscarriage and highlight emerging therapeutic strategies.

Endocrinology ◽  
2009 ◽  
Vol 150 (10) ◽  
pp. 4734-4743 ◽  
Author(s):  
Kun Qian ◽  
Linli Hu ◽  
Hong Chen ◽  
Haixia Li ◽  
Na Liu ◽  
...  

Abstract Decidualization is a critical step during embryo implantation and characterized by the differentiation of endometrial stromal cells (ESCs) into decidual cells. Because miRNAs are important determinants of cellular fate specification, in this study, the miRNA expression in ESCs during in vitro decidualization was profiled by using a microarray. Significance analysis of microarrays revealed that 49 miRNA genes were differently (>2-fold) expressed between the noninduced ESCs and induced ESCs with a false discovery rate of 0. The expression variance of hsa-miR-222, 221, 143, 101, 30d, 30c, 181b, 27b, 29b, 507, and 23a was validated by using quantitative PCR (P < 0.05). Based on microRNA (miRNA) and mRNA expression variance and predicted target genes of miRNAs, a bioinformatic model of miRNAs controlling ESCs differentiation was formulated. Finally, we proved that down-regulation of has-miR-222 could decrease the number of cells in S phase during ESCs differentiation (P < 0.05). Antisense oligonucleotides of has-miR-222 could increase reporter gene expression by targeting the 3′ untranslated regions of CDKN1C/p57kip2 mRNAs as well as increase CDKN1C/p57kip2 protein levels (P < 0.05). In conclusion, our results suggest that a subset of miRNAs play a key role in gene reprogramming during ESCs decidualization and that hsa-miR-222 participates in ESC differentiation by regulating ESCs terminally withdrawing from the cell cycle.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Paul J Brighton ◽  
Yojiro Maruyama ◽  
Katherine Fishwick ◽  
Pavle Vrljicak ◽  
Shreeya Tewary ◽  
...  

In cycling human endometrium, menstruation is followed by rapid estrogen-dependent growth. Upon ovulation, progesterone and rising cellular cAMP levels activate the transcription factor Forkhead box O1 (FOXO1) in endometrial stromal cells (EnSCs), leading to cell cycle exit and differentiation into decidual cells that control embryo implantation. Here we show that FOXO1 also causes acute senescence of a subpopulation of decidualizing EnSCs in an IL-8 dependent manner. Selective depletion or enrichment of this subpopulation revealed that decidual senescence drives the transient inflammatory response associated with endometrial receptivity. Further, senescent cells prevent differentiation of endometrial mesenchymal stem cells in decidualizing cultures. As the cycle progresses, IL-15 activated uterine natural killer (uNK) cells selectively target and clear senescent decidual cells through granule exocytosis. Our findings reveal that acute decidual senescence governs endometrial rejuvenation and remodeling at embryo implantation, and suggest a critical role for uNK cells in maintaining homeostasis in cycling endometrium.


2019 ◽  
Vol 240 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Vinay Shukla ◽  
Jyoti Bala Kaushal ◽  
Pushplata Sankhwar ◽  
Murli Manohar ◽  
Anila Dwivedi

Embryo implantation and decidualization are critical events that occur during early pregnancy. Decidualization is synchronized by the crosstalk of progesterone and the cAMP signaling pathway. Previously, we confirmed the role of TPPP3 during embryo implantation in mice, but the underlying role and mechanism of TPPP3 in decidualization has not yet been understood. The current study was aimed to investigate the role of TPPP3 in decidualization in vivo and in vitro. For in vivo experiments, decidual reaction was artificially induced in the uteri of BALB/c mice. TPPP3 was found to be highly expressed during decidualization, whereas in the uteri receiving TPPP3 siRNA, decidualization was suppressed and the expression of β-catenin and decidual marker prolactin was reduced. In human endometrium, TPPP3 protein was found to be predominantly expressed in the mid-secretory phase (LH+7). In the primary culture of human endometrial stromal cells (hESCs), TPPP3 siRNA knockdown inhibited stromal-to-decidual cell transition and decreased the expression of the decidualization markers prolactin and IGFBP-1. Immunofluorescence and immunoblotting experiments revealed that TPPP3 siRNA knockdown suppressed the expression of β-catenin, NF-κB and COX-2 in hESCs during decidualization. TPPP3 inhibition also decreased NF-kB nuclear accumulation in hESCs and suppressed NF-κB transcriptional promoter activity. COX-2 expression was significantly decreased in the presence of a selective NF-kB inhibitor (QNZ) implicating that NF-kB is involved in COX-2 expression in hESCs undergoing decidualization. TUNEL assay and FACS analysis revealed that TPPP3 knockdown induced apoptosis and caused loss of mitochondrial membrane potential in hESCs. The study suggested that TPPP3 plays a significant role in decidualization and its inhibition leads to the suppression of β-catenin/NF-κB/COX-2 signaling along with the induction of mitochondria-dependent apoptosis.


2020 ◽  
Vol 103 (6) ◽  
pp. 1152-1156
Author(s):  
Keiji Kuroda ◽  
Asako Ochiai ◽  
Jan J Brosens

Abstract Resveratrol, a natural polyphenolic compound, is widely studied for its anti-inflammatory and antisenescent properties. Recently, two studies reported seemingly conflicting findings on the actions of resveratrol on decidualization of human endometrial stromal cells (HESCs). One study by Ochiai et al. demonstrated that resveratrol inhibits decidual transformation of primary cultured HESCs. The other study by Mestre Citrinovitz et al., showed that resveratrol enhances decidualization of HESCs in culture. At a glance, the reason for these opposing observations seems puzzling. However, recent studies demonstrated that decidualization is a multistep process, which starts with an acute proinflammatory stress response that lasts for several days and is followed by the emergence of stress-resistant decidual cells as well as senescent decidual cells. The balance between these decidual subpopulations may determine if the cycling endometrium can successfully transition into the decidua of pregnancy upon embryo implantation. Here, we explore the importance of timing of drugs aimed at modulating the decidual response. We posit that resveratrol treatment during the initial proinflammatory decidual phase, i.e., coinciding with the implantation window in vivo, inhibits decidual transformation of the endometrium. However, when given after the initial phase, resveratrol may promote decidualization by inhibiting decidual senescence. Further, if restricted to the proliferative phase, resveratrol may promote ovarian function without adversely impacting on embryo implantation or decidualization. Thus, failure to align drug interventions with the correct phase of the menstrual cycle may negate beneficial clinical effects and results in adverse reproductive outcomes.


2017 ◽  
Author(s):  
Paul J Brighton ◽  
Yojiro Maruyama ◽  
Katherine Fishwick ◽  
Pavle Vrljicak ◽  
Shreeya Tewary ◽  
...  

SummaryIn cycling human endometrium, menstruation is followed by rapid estrogen-dependent growth. Upon ovulation, progesterone and rising cellular cAMP levels activate the transcription factor Forkhead box O1 (FOXO1) in endometrial stromal cells (EnSCs), leading to cell cycle exit and differentiation into decidual cells that control embryo implantation. Here we show that FOXO1 also causes acute senescence of a subpopulation of decidualizing EnSCs in an IL-8 dependent manner. Selective depletion or enrichment of this subpopulation revealed that decidual senescence drives the transient inflammatory response associated with endometrial receptivity. Further, senescent cells prevent differentiation of endometrial mesenchymal stem cells in decidualizing cultures. As the cycle progresses, IL-15 activated uterine natural killer (uNK) cells selectively target and clear senescent decidual cells through granule exocytosis. Our findings reveal that acute decidual senescence governs endometrial rejuvenation and remodeling at embryo implantation, and suggest a critical role for uNK cells in maintaining homeostasis in cycling endometrium.


2020 ◽  
Author(s):  
Maria Diniz-da-Costa ◽  
Chow-Seng Kong ◽  
Katherine J Fishwick ◽  
Thomas Rawlings ◽  
Paul John Brighton ◽  
...  

Pregnancy depends on the wholesale transformation of the endometrium, a process driven by differentiation of endometrial stromal cells (EnSC) into specialist decidual cells. Upon embryo implantation, decidual cells impart the tissue plasticity needed to accommodate a rapidly growing conceptus and invading placenta, although the underlying mechanisms are unclear. Here we characterize a discrete population of highly proliferative mesenchymal cells (hPMC) in midluteal human endometrium, coinciding with the window of embryo implantation. Single-cell transcriptomics demonstrated that hPMC express genes involved in chemotaxis and vascular transmigration. Although distinct from resident EnSC, hPMC also express genes encoding pivotal decidual transcription factors and markers, most prominently prolactin. We further show that hPMC are enriched around spiral arterioles, scattered throughout the stroma, and occasionally present in glandular and luminal epithelium. The abundance of hPMC correlated with the in vitro colony-forming unit activity of midluteal endometrium and, conversely, clonogenic cells in culture express a gene signature partially conserved in hPMC. Cross-referencing of single-cell RNA-sequencing data sets indicated that hPMC differentiate into a recently discovered decidual subpopulation in early pregnancy. Finally, we demonstrate that recurrent pregnancy loss is associated with hPMC depletion. Collectively, our findings characterize midluteal hPMC as novel decidual precursors that are likely derived from circulating bone marrow-derived mesenchymal stem/stromal cells and integral to decidual plasticity in pregnancy.


2010 ◽  
Vol 22 (9) ◽  
pp. 101
Author(s):  
L. Lin ◽  
E. M. Menkhorst ◽  
E. Dimitriadis

Decidualization is the differentiation of endometrial stromal cells into decidual cells. It is a critical process in embryo implantation, placentation and the establishment of pregnancy. Inadequate decidualization can lead to infertility, abnormal placentation and recurrent miscarriage. Endometrial leukemia inhibitory factor (LIF) is indispensible in blastocyst implantation in mice and dysregulated in infertile women. LIF is produced by 1st trimester decidual cells but its role in decidualization is not known. This study aimed to examine the role of LIF in human and mouse decidualization. Primary human endometrial stomal cells (HESC) were isolated and decidualized (D) by treatment with estradiol (E) +medroxyprogesterone acetate (MPA) for 14 days. HESC were also treated with E+MPA+/–LIF (0.5, 5, 50, 100 and 200 ng/mL) for 14 days. Prolactin secretion was used to assess the extent of decidualization (n = 6). D and non-D HESC were also treated with LIF (0.5, 5, 50, 100 and 200 ng/mL +/– LIF inhibitor) for 15min and the phosphorylation (p) of signal transducer and activator of transcription (STAT)3/STAT3 abundance was detected by Western blot (n = 4). RNA was isolated for analysis of LIF and LIF receptor (R) mRNA expression during decidualization (n = 4). HESC treated with E+MPA+LIF (50, 100 and 200 ng/mL) secreted more prolactin compared to cells treated with E+MPA alone (P < 0.05). LIF increased pSTAT3/STAT3 abundance in D and non-D cells while LIF+LIF inhibitor abolished pSTAT3/STAT3. LIF mRNA was downregulated while LIF-R mRNA increased during decidualization. In vivo, mated mice (n = 5) were injected intraperitoneally with a unique long acting LIF inhibitor post-implantation at day 4.5 of pregnancy and resulted in reduced decidualization compared to control. This is the first study to demonstrate that LIF promoted decidualization of HESC possibly via pSTAT3. It further suggested that LIF regulated decidualization in mice demonstrating a newly identified critical role for LIF in the establishment of pregnancy.


2020 ◽  
Vol 102 (4) ◽  
pp. 843-851 ◽  
Author(s):  
Arin K Oestreich ◽  
Sangappa B Chadchan ◽  
Alexandra Medvedeva ◽  
John P Lydon ◽  
Emily S Jungheim ◽  
...  

Abstract Successful establishment of pregnancy depends on steroid hormone-driven cellular changes in the uterus during the peri-implantation period. To become receptive to embryo implantation, uterine endometrial stromal cells (ESCs) must transdifferentiate into decidual cells that secrete factors necessary for embryo survival and trophoblast invasion. Autophagy is a key homeostatic process vital for cellular homeostasis. Although the uterus undergoes major cellular changes during early pregnancy, the precise role of autophagy in uterine function is unknown. Here, we report that conditional knockout of the autophagy protein FIP200 in the reproductive tract of female mice results in reduced fecundity due to an implantation defect. In the absence of FIP200, aberrant progesterone signaling results in sustained uterine epithelial proliferation and failure of stromal cells to decidualize. Additionally, loss of FIP200 impairs decidualization of human ESCs. We conclude that the autophagy protein FIP200 plays a crucial role in uterine receptivity, decidualization, and fertility. These data establish autophagy as a major cellular pathway required for uterine receptivity and decidualization in both mice and human ESCs.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Esther Dos Santos ◽  
Hadia Moindjie ◽  
Valérie Sérazin ◽  
Lucie Arnould ◽  
Yoann Rodriguez ◽  
...  

Abstract Background Successful human embryo implantation requires the differentiation of endometrial stromal cells (ESCs) into decidual cells during a process called decidualization. ESCs express specific markers of decidualization, including prolactin, insulin-like growth factor-binding protein-1 (IGFBP-1), and connexin-43. Decidual cells also control of trophoblast invasion by secreting various factors, such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases. Preimplantation factor (PIF) is a recently identified, embryo-derived peptide with activities at the fetal-maternal interface. It creates a favorable pro-inflammatory environment in human endometrium and directly controls placental development by increasing the human trophoblastic cells’ ability to invade the endometrium. We hypothesized that PIF’s effects on the endometrium counteract its pro-invasive effects. Methods We tested sPIF effect on the expression of three decidualization markers by RT-qPCR and/or immunochemiluminescence assay. We examined sPIF effect on human ESC migration by performing an in vitro wound healing assay. We analyzed sPIF effect on endometrial control of human trophoblast invasion by performing a zymography and an invasion assay. Results Firstly, we found that a synthetic analog of PIF (sPIF) significantly upregulates the mRNA expression of IGFBP-1 and connexin-43, and prolactin secretion in ESCs - suggesting a pro-differentiation effect. Secondly, we showed that the HTR-8/SVneo trophoblastic cell line’s invasive ability was low in the presence of conditioned media from ESCs cultured with sPIF. Thirdly, this PIF’s anti-invasive action was associated with a specifically decrease in MMP-9 activity. Conclusion Taken as a whole, our results suggest that PIF accentuates the decidualization process and the production of endometrial factors that limit trophoblast invasion. By controlling both trophoblast and endometrial cells, PIF therefore appears to be a pivotal player in the human embryo implantation process.


Reproduction ◽  
2018 ◽  
Author(s):  
Qianrong Qi ◽  
Yifan Yang ◽  
Kailin Wu ◽  
Qingzhen Xie

Recent studies revealed that TMEM16A is involved in several reproductive processes, including ovarian estrogen secretion and ovulation, sperm motility and acrosome reaction, fertilization, and myometrium contraction. However, little is known about the expression and function of TMEM16A in embryo implantation and decidualization. In this study, we focused on the expression and regulation of TMEM16A in mouse uterus during early pregnancy. We found that TMEM16A is up-regulated in uterine endometrium in response to embryo implantation and decidualization. Progesterone treatment could induce TMEM16A expression in endometrial stromal cells through progesterone receptor/c-Myc pathway, which is blocked by progesterone receptor antagonist or the inhibitor of c-Myc signaling pathway. Inhibition of TMEM16A by small molecule inhibitor (T16Ainh-A01) resulted in impaired embryo implantation and decidualization in mice. Treatment with either specific siRNA of Tmem16a or T16Ainh-A01 inhibited the decidualization and proliferation of mouse endometrial stromal cells. In conclusion, our results revealed that TMEM16A is involved in embryo implantation and decidualization in mice, compromised function of TMEM16A may lead to impaired embryo implantation and decidualization.


Sign in / Sign up

Export Citation Format

Share Document