scholarly journals 6DIVE: 6 Degrees-of-Freedom Immersive Video Editor

2021 ◽  
Vol 2 ◽  
Author(s):  
Ruairi Griffin ◽  
Tobias Langlotz ◽  
Stefanie Zollmann

Editing 6DoF videos using standard video editing tools is challenging, especially for non-expert users. There is a large gap between the 2D interface used for traditional video editing and the immersive VR environment used for replay. In this paper, we present 6DIVE, a 6 degrees-of-freedom (DoF) immersive video editor. 6DIVE allows users to edit these 6DoF videos directly in an immersive VR environment. In this work, we explored options for a timeline representation as well as UI placement suitable for immersive video editing. We used our prototypical implementation of an immersive video editor to conduct a user study to analyze the feasibility and usability of immersive 6DoF editing. We compared 6DIVE to a desktop-based implementation of a VR video editor. Our initial results suggest that 6DIVE allows even non-expert users to perform basic editing operations on videos in VR. While we did not find any statistically significant differences for the workload between the VR and the desktop interface, we found a statistically significant difference in user preference, with a preference for the VR interface. We also found higher ratings for the user experience metrics in VR captured by the user experience questionnaire.

2021 ◽  
Vol 2 ◽  
Author(s):  
Julie Madelen Madshaven ◽  
Tonje Fjeldstad Markseth ◽  
David Bye Jomås ◽  
Ghislain Maurice Norbert Isabwe ◽  
Morten Ottestad ◽  
...  

Virtual reality (VR) technology is a promising tool in physical rehabilitation. Research indicates that VR-supported rehabilitation is beneficial for task-specific training, multi-sensory feedback, diversified rehabilitation tasks, and patient motivation. Our first goal was to create a biomechatronics laboratory with a VR setup for increasing immersion and a motion platform to provide realistic feedback to patients. The second goal was to investigate possibilities to replicate features of the biomechatronics laboratory in a home-based training system using commercially available components. The laboratory comprises of a motion platform with 6-degrees-of-freedom (Rexroth eMotion), fitted with a load cell integrated treadmill, and an Oculus Quest virtual reality headset. The load cells provide input for data collection, as well as VR motion control. The home-based rehabilitation system consists of a Nintendo Wii Balance Board and an Oculus Rift virtual reality headset. User studies in the laboratory and home environment used direct observation techniques and self-reported attitudinal research methods to assess the solution’s usability and user experience. The findings indicate that the proposed VR solution is feasible. Participants using the home-based system experienced more cybersickness and imbalance compared to those using the biomechatronics laboratory solution. Future studies will look at a setup that is safe for first patient studies, and exercises to improve diagnosis of patients and progress during rehabilitation.


2011 ◽  
Vol 200 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Sabine Scheibe ◽  
Mario M. Dorostkar ◽  
Christian Seebacher ◽  
Rainer Uhl ◽  
Frank Lison ◽  
...  

2015 ◽  
Vol 35 (4) ◽  
pp. 341-347 ◽  
Author(s):  
E. Rouhani ◽  
M. J. Nategh

Purpose – The purpose of this paper is to study the workspace and dexterity of a microhexapod which is a 6-degrees of freedom (DOF) parallel compliant manipulator, and also to investigate its dimensional synthesis to maximize the workspace and the global dexterity index at the same time. Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Design/methodology/approach – Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Findings – It has been shown that the proposed procedure for the workspace calculation can considerably speed the required calculations. The optimization results show that a converged-diverged configuration of pods and an increase in the difference between the moving and the stationary platforms’ radii cause the global dexterity index to increase and the workspace to decrease. Originality/value – The proposed algorithm for the workspace analysis is very important, especially when it is an objective function of an optimization problem based on the search method. In addition, using screw theory can simply construct the homogeneous Jacobian matrix. The proposed methodology can be used for any other micromanipulator.


Soil Research ◽  
2002 ◽  
Vol 40 (8) ◽  
pp. 1399 ◽  
Author(s):  
B. L. Henderson ◽  
E. N. Bui

A new pH water to pH CaCl2 calibration curve was derived from data pooled from 2 National Land and Water Resources Audit projects. A total of 70465 observations with both pH in water and pH in CaCl2 were available for statistical analysis. An additive model for pH in CaCl2 was fitted from a smooth function of pH in water created by a smoothing spline with 6 degrees of freedom. This model appeared stable outside the range of the data and performed well (R2 = 96.2, s = 0.24). The additive model for conversion of pHw to pHCa is sigmoidal over the range of pH 2.5 to 10.5 and is similar in shape to earlier models. Using this new model, a look-up table for converting pHw to pHCa was created.


2021 ◽  
Vol 9 (2) ◽  
pp. 142-150
Author(s):  
Ivan Guschin ◽  
Anton Leschinskiy ◽  
Andrey Zhukov ◽  
Alexander Zarukin ◽  
Vyacheslav Kiryukhin ◽  
...  

The results of the development of a radiation-tolerant robotic complex URS-2 for operation in hot cells at nuclear enterprises are presented. The robotic complex consists of several original components: robotic arm, control device with force feedback, control panel with hardware buttons and touch screen, control computer with system and application software, control-and-power cabinet. The robotic manipulator has 6 degrees of freedom, replaceable pneumatic grippers and is characterized by high radiation tolerance, similar to that of mechanical master-slave manipulators. The original design of the control device based on the delta-robot model that implements a copying mode of manual control of the robotic complex with force feedback is presented. The hardware and software solutions developed has made it possible to create a virtual simulator of the RTC for testing innovative methods of remote control of the robot, as well as teaching operators to perform technological tasks in hot cells. The experimental model of the robotic complex has demonstrated the ability to perform basic technological tasks in a demo hot cell, both in manual and automatic modes.


Sign in / Sign up

Export Citation Format

Share Document