scholarly journals Using AquaCrop as a Decision-Support Tool for Small-Scale Irrigation Systems Was Dictated by the Institutional and Market Incentives in Ethiopia

2021 ◽  
Vol 3 ◽  
Author(s):  
Birhanu Biazin ◽  
Solomon Wondatir ◽  
Gebeyaw Tilahun ◽  
Nuredin Asaro ◽  
Tilahun Amede

The threat of water scarcity in sub-Saharan Africa is exacerbated by the expanding agricultural water needs, increasing climate variability and inappropriate land use. It calls for technological and institutional innovations to improve water productivity, while sustaining the resources base. This study was undertaken to examine the effect of deficit and supplementary irrigation for staggered production of potato driven by market opportunities at different periods in northeastern Ethiopia. We used potato (Solanum tuberosum) to demonstrate AQUACrop as a tool for improving water productivity during Belg (short) and Meher (long) rainfall seasons. A field experiment was undertaken using supplementary irrigation at different levels of potato crop water satisfaction (50% ETc, 75% ETc, 100% ETc and rainfed conditions) during the Belg (February–May 2020) and Meher (July–October 2020) seasons. Upon proper calibration of AquaCrop for the local potato variety (Belete), long-term simulations revealed that the mean net irrigation requirements were 249 mm during Belg season while the probability of applying supplementary irrigation during Meher was <10% when the effective precipitation was greater than the crop water requirement (ETc) in more than 75% of the years. Although there was significantly higher potato tuber yield from the 100% ETc than that from the 75% ETc, the latter had higher water supply efficiency than the former. Long-term simulations further revealed that the number of rainfall days was more important than the amount of rainfall during the growing period. We engaged water users' associations to employ the recommendation and enforce supplementary irrigation as predicted by the model and we present farmers' response and reasons for resistance toward water saving approaches. Hence, we concluded that 50% ETc and 75% ETc irrigation levels can still be recommended upon proper scheduling to address long dry spells, especially during the middle growth stages in the face of irrigation conflict. However, the institutional settings and market incentives associated with it are the major drivers of adopting improved irrigation water management practices.

2019 ◽  
Vol 11 (6) ◽  
pp. 705 ◽  
Author(s):  
Poolad Karimi ◽  
Bhembe Bongani ◽  
Megan Blatchford ◽  
Charlotte de Fraiture

Remote sensing techniques have been shown, in several studies, to be an extremely effective tool for assessing the performance of irrigated areas at various scales and diverse climatic regions across the world. Open access, ready-made, global ET products were utilized in this first-ever-countrywide irrigation performance assessment study. The study aimed at identifying ‘bright spots’, the highest performing sugarcane growers, and ‘hot spots’, or low performing sugarcane growers. Four remote sensing-derived irrigation performance indicators were applied to over 302 sugarcane growers; equity, adequacy, reliability and crop water productivity. The growers were segmented according to: (i) land holding size or grower scale (ii) management regime, (iii) location of the irrigation schemes and (iv) irrigation method. Five growing seasons, from June 2005 to October 2009, were investigated. The results show while the equity of water distribution is high across all management regimes and locations, adequacy and reliability of water needs improvement in several locations. Given the fact that, in general, water supply was not constrained during the study period, the observed issues with adequacy and reliability of irrigation in some of the schemes were mostly due to poor scheme and farm level water management practices. Sugarcane crop water productivity showed the highest variation among all the indicators, with Estate managed schemes having the highest CWP at 1.57 kg/m3 and the individual growers recording the lowest CWP at 1.14 kg/m3, nearly 30% less. Similarly center pivot systems showed to have the highest CWP at 1.63 kg/m3, which was 30% higher than the CWP in furrow systems. This study showcases the applicability of publicly available global remote sensing products for assessing performance of the irrigated crops at the local level in several aspects.


2020 ◽  
Vol 43 (338) ◽  
pp. 35-41
Author(s):  
Ammal Abukari ◽  
Rahamatu Abukari

AbstractIn sub-Saharan Africa intensifying small-scale farming is essential in addressing poverty related issues in rural communities and the degradation of natural resources. Integrated Soil Fertility Management (ISFM) are the best practices used to improve the productivity of crops whilst maximizing agronomic efficiency of inputs applied and hence contributing to sustainable intensification. ISFM usually include the appropriate use of inorganic fertilizer and organic resources, good agronomic practices and appropriate use of germplasm. The survey was carried-out on the awareness of Integrated Soil Fertility Management practices in the Savelugu Municipal of Northern Ghana to study the awareness of integrated soil fertility management practices amongst farmers through the administration of questionnaires. A multistage method of sampling was used in selecting thirty (30) respondents randomly from five (5) selected communities namely Jana, Yapalsi, Diari, Nabogu and Gushie to make up a total sample size of 150 respondents. Frequency distribution and percentages were used to represent the data. Correlation analysis was used to test for the relationship between awareness, educational level and household size. The survey showed that majority of the respondents at ages between 21 and 30 years were married and majority with household size of 3 to 5 as well as primary and secondary education. Farming activities were carried-out by hand (80%). Majority of the respondents (43.3%) were informed about ISFM through demonstrations and 20% of the farmers apply inorganic fertilizer. About 85.5% of the respondents were aware of ISFM. The research also revealed that ISFM improves production and supports finances of respondents. The assessment of respondents’ perception of ISFM revealed a positive agreement of the effect of ISFM on soil health as well as improved production. In conclusion, it is thus suggested that it is needful for the involvement of the government on the adoption of ISFM via Non-Governmental Organisations (NGOs) locally and or internationally for a suitable advancement and to guarantee a sustainable environment with a world-wide corporation for improvement.


2017 ◽  
Vol 60 (4) ◽  
pp. 1189-1208 ◽  
Author(s):  
Meetpal S. Kukal ◽  
Suat Irmak

Abstract. Sustainable agricultural utilization of the limited water resources demands improvements in understanding the changes in crop water productivity (CWP) in space and time, which is often presented as a potential solution to relieve the growing pressure on fresh water resources. In addition, crop yield needs to be studied in relation to precipitation received annually and during the growing season for its contribution to reduce irrigation water requirements, which is quantified through precipitation use efficiency (PUE). Hence, systematic quantifications, mapping, and analyses of large-scale CWP and PUE levels are needed. This study aims to quantify long-term (1982-2013) information on grain yield, PUE, and CWP for maize and soybean in the U.S. Great Plains counties and to map and analyze them. Multiple public data sources were used, including weather, satellite, and yield datasets for the 834 counties over a 32-year period. Long-term average maize grain yield ranged from 1.56 to 12.81 t ha-1 with a regional average of 6.66 t ha-1. Long-term average soybean grain yield ranged from 0.47 to 3.46 t ha-1 with an average of 2.17 t ha-1. About 87% and 89% of the counties in the region showed increasing trends in grain yield for maize and soybean, respectively, with regional average increasing trends for maize and soybean yield of 0.1014 and 0.0328 t ha-1 year-1, respectively. The regional annual PUE (ANNPUE) and growing season PUE (GRSPUE) were 1.09 and 1.90 kg m-3, respectively, for maize and 0.32 and 0.55 kg m-3, respectively, for soybean. In addition, the regional average increasing trends in maize ANNPUE (exhibited by 88% of counties) and GRSPUE (exhibited by 85% of counties) were 0.0174 and 0.0316 kg m-3 year-1. For soybean, regional average increasing trends in ANNPUE (exhibited by 91% of counties) and GRSPUE (exhibited by 87% of counties) were 0.0048 and 0.0081 kg m-3 year-1. The magnitude of maize CWP varied from 0.30 to 2.97 kg m-3 with a regional average of 1.08 kg m-3, and soybean CWP varied from 0.15 to 0.67 kg m-3 with a regional average of 0.40 kg m-3. It was found that 79% and 86% of the counties showed positive trends in maize and soybean CWP, respectively, and the increasing trend magnitudes were 0.0144 and 0.0047 kg m-3 year-1. Pooled data from all counties and growing seasons were used to develop frequency distribution histograms to quantify the inter-annual variation and distribution characteristics. The level of CWP variability represented via maps revealed regions where opportunity exists for improvements in production system efficiency. A comprehensive understanding of the spatial and temporal patterns in these efficiency indices will provide a basis for decision-making in resource assessments, planning, evaluation, and investment by state and federal agencies and stakeholders. Keywords: Agriculture, Climate, Evapotranspiration, Great Plains, Water productivity.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Sisay Ambachew Mekonnen ◽  
Assefa Sintayehu

Sesame (Sesamum indicum L.) is the leading oil seed crop produced in Ethiopia. It is the second most important agricultural commodity for export market in the country. It is well suited as an alternative crop production system, and it has low crop water requirement with moderate resistance to soil moisture deficit. The low land of North Western Ethiopia is the major sesame producer in the country, and the entire production is from rainfed. The rainfall distribution in North Western Ethiopia is significantly varied. This significant rainfall variability hampers the productivity of sesame. Irrigation agriculture has the potential to stabilize crop production and mitigate the negative impacts of variable rainfall. This study was proposed to identify critical growth stages during which sesame is most vulnerable to soil moisture deficit and to evaluate the crop water productivity of sesame under deficit irrigation. The performance of sesame to stage-wise and uniform deficit irrigation scheduling technique was tested at Gondar Agricultural Research Center (Metema Station), Northern Western Ethiopia. Eight treatments, four stage-wise deficit, two uniform deficit, one above optimal, and one optimal irrigation applications, were evaluated during the 2017 irrigation season. The experiment was designed as a randomized complete block design with three replications. Plant phenological variables, grain yield and crop water productivity, were used for performance evaluation. The result showed that deficit irrigation can be applied both throughout and at selected growth stages except the midseason stage. Imposing deficit during the midseason gave the lowest yield indicating the severe effect of water deficit during flowering and capsule initiation stages. When deficit irrigation is induced throughout, a 25% uniform deficit irrigation can give the highest crop water productivity with no or little yield reduction as compared with optimal irrigation. Implementing deficit irrigation scheduling technique will be beneficial for sesame production. Imposing 75% deficit at the initial, development, late season growth stages or 25% deficit irrigation throughout whole seasons will improve sesame crop water productivity.


2012 ◽  
Vol 48 (3) ◽  
pp. 347-377 ◽  
Author(s):  
M. K. V. CARR

SUMMARYThe results of research on the water relations and irrigation need of Citrus spp. are collated and reviewed in an attempt to link fundamental studies on crop physiology to drought mitigation and irrigation practices. Background information is given on the centres of origin (south-east Asia) and of production of citrus (areas with subtropical Mediterranean-type climates). The effects of water stress on the development processes of the crop are summarised followed by reviews of the plant water relations, crop water requirements, water productivity and irrigation systems. The topic is complicated by the diversity of species and cultivars (including rootstocks) that are embraced within Citrus spp. The effects of water availability on vegetative growth are understood in general terms, but the relationships have not yet been quantified. Similarly, the need for a ‘rest period’ to induce flowering is understood, but its magnitude (in terms of a drought stress index or day-degrees) does not appear to have been specified with precision. Again, the effects of drought on flower and fruit formation and retention are understood in general terms, but the relationships have not been quantified in useful ways for specific cultivars. Rooting depth and distribution have only been described in a limited number of situations. Environmental factors influencing stomatal conductances are generally well described and relationships with some growth processes established. Compared with other crops, low stomatal/canopy conductance restricts water use of Citrus spp. Some (limited) progress has been made in quantifying crop water requirements in specific conditions. Despite many recent attempts to specify how little water can be applied at specific growth stages to optimise water productivity through regulated deficit irrigation, no consensus view has emerged. The yield response to ‘full’ irrigation is of the order 6–7 kg fresh fruit m−3 as a result of an increase in the number of fruit of marketable size. There are also improvements in fruit quality. The most effective way of irrigating a citrus orchard is with a microirrigation system (drip or microsprinklers), but both methods require answers to the question: what proportion of the root zone needs to be irrigated? Both methods, especially drip, allow water to be applied (with fertigation) at very frequent intervals (including several times a day), although formal evidence of the benefits to be obtained from this level of intensification is lacking.


2019 ◽  
Vol 11 (3) ◽  
pp. 22
Author(s):  
Belinda Prekoh Bruce ◽  
Abdul-Rauf Malimanga Alhassan ◽  
Xuecheng Dou ◽  
Daxin Gong

The Savelugu-Nanton District of Northern Ghana is a beneficiary of irrigation projects mostly on small scale basis schemes. Poor data situation due to inadequate appraisal of these schemes results in difficulty to track their progress and impacts, which threatens their sustainability. This study was conducted to assess the profitability and productivity of the Libga and Bunglung small scale irrigation schemes in the District between 2013 and 2015. Sixty households were selected using random sampling techniques. Production data, costs, yield and soil data were gathered using structured questionnaires and field measurements. Data on traditional rainfed systems were gathered from secondary information. The results indicated that yields of rice were greater in Bunglung than in Libga scheme but both schemes had greater yields than rainfed systems, resulting in greater profits under irrigation. However, yields of pepper were greater in Libga than in Bunglung. Crop water productivity (CWP) in terms of harvested weight of rice was 0.50 and 0.58 kilogram per cubic meter in Libga and Bunglung respectively while CWPs in terms of gross value of harvested rice were 0.38 and 0.41 Ghana cedis per cubic meter respectively. For pepper, the CWPs were 0.74 and 0.64 kilogram per cubic meter in terms of crop weight in Libga and Bunglung respectively while CWPs in terms of gross value were 1.23 and 1.07 Ghana cedis per cubic meter respectively. Irrigation improved farmers’ incomes, however, pepper production was more profitable than rice production at both schemes. More investments by farmers are important to achieving maximum yields.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 836
Author(s):  
Elizabeth Ahikiriza ◽  
Joshua Wesana ◽  
Xavier Gellynck ◽  
Guido Van Huylenbroeck ◽  
Ludwig Lauwers

Despite the huge potential for milk production, interventions to improve productivity in sub-Saharan Africa (SSA) are barely based on specified farm classifications. This study aimed to develop robust and context-specific farm typologies to guide content of extension farm advice/services in Uganda. From a sample of 482 dairy farmers, we collected data on farmer socio-demographics, farm management practices, ownership of farm tools and facilities, willingness to pay for extension services, milk production, and marketing. Farm typologies were obtained based on principal component and cluster analyses. Thereby, of the three dairy production systems that emerged, small-scale, largely subsistence yet extensive and low productive farms were more prominent (82.6%). Farms that were classified as large-scale, less commercialized yet extensive with modest productive systems were more than the medium-scale commercial farms with intensive and highly productive systems. However, the later were considered to potentially transform dairy farming in Uganda. It was also predicted that the validity of our farm classification may persist until half of the farms have moved between clusters. The study gives new insights on dairy production systems in Uganda, which can be used to organize more targeted research on farmers’ extension needs for facilitating delivery of relevant and effective extension services and designing appropriate extension policies.


2018 ◽  
Vol 7 (2) ◽  
pp. 81-94
Author(s):  
Asfaw Azanaw ◽  
Chemeda Fininsa ◽  
Samuel O. Sahile ◽  
Geremew Terefe

Sesame is one of the important oil crops in Ethiopia for the international market while its production has challenged by lack of appropriate agronomic practices, weather uncertainties, weeds, insects and diseases outbreaks. Bacterial leaf blight caused by Xanthomonas campestris PV. sesami is the most common and inflicts heavy qualitative and quantitative losses. The objectives of the present study were to assess bacterial blight incidence, severity and its association with agronomic practices in north Gondar Ethiopia. A Field survey was conducted in Metema and Mirab Armachiho in 2014 cropping season at flowering and fruiting growth stages. A total of 80 fields were assessed for the disease assessment from both large and small-scale farmers. Data on prevalence, incidence, severity and, management practices have been recorded. All surveyed fields were infected both at flowering and fruiting stage of the crop. Mean incidence over the two districts varied from 78% at Metema to 96.5% at Mirab Armachiho. The minimum mean severity (6.1%) has been recorded in Metema district and, the highest mean severity (76.9%) has been recorded at Mirab Armachiho. The association of independent variables with bacterial blight incidence and severity were varied. The district, variety, growth stage, altitude, slope, crop density, previous crop, soil type, and weed density variables have significantly associated with bacterial blight incidence. Variables producer and sowing date were non-significant as a single predictor in the logistic regression model. Similarly, all the variables were significantly associated with bacterial blight severity.     


Sign in / Sign up

Export Citation Format

Share Document