scholarly journals Eating While the Eating’s Good: How Fire Creates a Magnet for Grazing Animals

2021 ◽  
Vol 9 ◽  
Author(s):  
Sherry A. Leis ◽  
Carol E. Baldwin

Tallgrass prairie is disappearing because farming and development have replaced it. This ecosystem is home to a unique group of plants, animals, and microbial life. The processes of fire, grazing by animals, and drought are important to the tallgrass prairie. They can influence each other and prairie life. For example, pyric-herbivory is the interaction of fire and grazing on the landscape. Burned areas attract herbivores (plant eaters) like a magnet. After fires, plant growth is nutritious and easy to find. Herbivores prefer grazing recently burned areas, creating patches of different habitats that support many other wildlife species, too. You can see pyric-herbivory in action at the Tallgrass Prairie National Preserve, where fire, cattle, and bison are a part of the preserve’s management team! Healthy tallgrass prairie needs both fire and grazing.

2020 ◽  
Vol 13 (5) ◽  
pp. 641-648
Author(s):  
Lloyd W Morrison ◽  
Sherry A Leis ◽  
Michael D DeBacker

Abstract Aims Observer error is an unavoidable aspect of vegetation surveys involving human observers. We quantified four components of interobserver error associated with long-term monitoring of prairie vegetation: overlooking error, misidentification error, cautious error and estimation error. We also evaluated the association of plot size with pseudoturnover due to observer error, and how documented pseudochanges in species composition and abundance compared with recorded changes in the vegetation over a 4-year interval. Methods This study was conducted at Tallgrass Prairie National Preserve, Kansas. Monitoring sites contained 10 plots; each plot consisted of a series of four nested frames (0.01, 0.1, 1 and 10 m2). The herbaceous species present were recorded in each of the nested frames, and foliar cover was visually estimated within seven cover categories at the 10 m2 spatial scale only. Three hundred total plots (30 sites) were surveyed, and 28 plots selected at random were resurveyed to assess observer error. Four surveyors worked in teams of two. Important Findings At the 10 m2 spatial scale, pseudoturnover resulting from overlooking error averaged 18.6%, compared with 1.4% resulting from misidentification error and 0.6% resulting from cautious error. Pseudoturnover resulting from overlooking error increased as plot size decreased, although relocation error likely played a role. Recorded change in species composition over a 4-year interval (excluding potential misidentification error and cautious error) was 30.7%, which encompassed both pseudoturnover due to overlooking error and actual change. Given a documented overlooking error rate of 18.6%, this suggests the actual change for the 4-year period was only 12.1%. For estimation error, 26.2% of the time a different cover class was recorded. Over the 4-year interval, 46.9% of all records revealed different cover classes, suggesting that 56% of the records of change in cover between the two time periods were due to observer error.


1991 ◽  
Vol 69 (12) ◽  
pp. 2597-2602 ◽  
Author(s):  
S. P. Bentivenga ◽  
B. A. D. Hetrick

The impact of benomyl fungicide and spring burning on mycorrhizal activity and plant growth was assessed in tallgrass prairie in Kansas. We report for the first time that the productivity of mycotrophic plants can be reduced by inhibition of indigenous vesicular–arbuscular mycorrhizal fungi under field conditions. A vital stain, nitro blue tetrazolium, used to assess active mycorrhizal colonization, proved to be a more sensitive measure of treatment effects than the cell wall stain, trypan blue. Burning stimulated both plant growth and active mycorrhizal colonization. However, by 32 days after burning no differences in colonization were detected. Our observations support the hypothesis that mycorrhizal fungi play an important role in the growth of warm-season tallgrass prairie grasses and may contribute to enhanced plant growth of warm-season tallgrass prairie grasses and may contribute to enchanced plant growth following spring burning. Key words: burning, benomyl fungicide, phosphorus, tallgrass prairie, VA mycorrhizae, warm-season grasses.


2021 ◽  
Vol 37 (1) ◽  
Author(s):  
Sarah K. Jackson ◽  
Ryan L. Sharp ◽  
Emily L. Mailey ◽  
Adam A. Ahlers

2018 ◽  
Vol 121 (1-2) ◽  
pp. 145-152
Author(s):  
Marcus C. Portofee ◽  
David R. Edds ◽  
Kristen J. Hase ◽  
Darin L. McCullough

2017 ◽  
Vol 120 (1-2) ◽  
pp. 68-72
Author(s):  
Marcus C. Portofee ◽  
Michael A. Child ◽  
David R. Edds

2017 ◽  
Vol 26 (4) ◽  
pp. 306 ◽  
Author(s):  
Victoria A. Hudspith ◽  
Claire M. Belcher ◽  
Jennifer Barnes ◽  
Carolyn B. Dash ◽  
Ryan Kelly ◽  
...  

Wildfires are anticipated to increase in frequency and extent in the Arctic tundra. In the unprecedented 2010 fire season, 37 tundra fires burned 435 km2 of the Noatak National Preserve, Alaska. We sampled sixteen soil monoliths from four of these burned areas, which based on microsite burn severity assessments ranged from scorched to moderate–high. Surface charcoals were later studied using reflectance microscopy, as charcoal reflectance may semiquantitatively indicate the duration of heating experienced by a given fuel. Here, the combination of high fuel moisture contents and rapid consumption of fine tussock fuels likely resulted in short fire residence times across the four burned areas, giving an overall low median charcoal reflectance for the entire assemblage (0.82%Romedian). The low charcoal reflectances of the ground fuels provide further evidence for limited heat transference to the organic soil (bryophytes, 0.57 ± 0.17%Romedian; duff and litter, 0.83 ± 0.33%Romedian). The range of observed microsite burn severities is therefore likely attributable to localised variations in above- and ground fuel moisture contents resulting in heterogeneously burned fuels. Consequently, charcoal reflectance is able to provide additional information about current fire behaviour that may improve our understanding of tussock–shrub tundra fires in the future.


Sign in / Sign up

Export Citation Format

Share Document