Charcoal reflectance suggests heating duration and fuel moisture affected burn severity in four Alaskan tundra wildfires

2017 ◽  
Vol 26 (4) ◽  
pp. 306 ◽  
Author(s):  
Victoria A. Hudspith ◽  
Claire M. Belcher ◽  
Jennifer Barnes ◽  
Carolyn B. Dash ◽  
Ryan Kelly ◽  
...  

Wildfires are anticipated to increase in frequency and extent in the Arctic tundra. In the unprecedented 2010 fire season, 37 tundra fires burned 435 km2 of the Noatak National Preserve, Alaska. We sampled sixteen soil monoliths from four of these burned areas, which based on microsite burn severity assessments ranged from scorched to moderate–high. Surface charcoals were later studied using reflectance microscopy, as charcoal reflectance may semiquantitatively indicate the duration of heating experienced by a given fuel. Here, the combination of high fuel moisture contents and rapid consumption of fine tussock fuels likely resulted in short fire residence times across the four burned areas, giving an overall low median charcoal reflectance for the entire assemblage (0.82%Romedian). The low charcoal reflectances of the ground fuels provide further evidence for limited heat transference to the organic soil (bryophytes, 0.57 ± 0.17%Romedian; duff and litter, 0.83 ± 0.33%Romedian). The range of observed microsite burn severities is therefore likely attributable to localised variations in above- and ground fuel moisture contents resulting in heterogeneously burned fuels. Consequently, charcoal reflectance is able to provide additional information about current fire behaviour that may improve our understanding of tussock–shrub tundra fires in the future.

1988 ◽  
Vol 18 (1) ◽  
pp. 128-131 ◽  
Author(s):  
R. Trowbridge ◽  
M. C. Feller

Unsuccessful attempts to ignite slash resulting from the mechanical knocking down of lodgepole pine in west central British Columbia led to a short-term investigation of the relationship between the Fine Fuel Moisture Code of the Canadian Forest Fire Weather Index System and the moisture content of various fine fuel components <1 cm in diameter. Of the types of fuel sampled, the moisture contents of B.C. Forest Service fuel moisture sticks and aged slash were similar to, and well correlated (r = 0.79 and 0.81, respectively) with, the equivalent moisture content calculated from the Fine Fuel Moisture Code. The Fine Fuel Moisture Code was not designed to relate to the moisture content of uncured fuels. Thus, the moisture contents of fresh living slash (material from knocked down trees still attached to living roots) and of fresh dead slash (material unattached to living trees that had not yet experienced a complete fire season in which to fully cure) were poorly correlated with moisture content (r = 0.16 and 0.42, respectively). The moisture content of the progressively curing, needle-bearing fresh dead slash was relatively high at the beginning of the fire season, but became similar to the moisture content during the first half of July. This suggests that the Fine Fuel Moisture Code can also be used to predict the moisture content of such fine slash after these fuels have cured for approximately 3 months during the snow-free period.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Megan M. Friggens ◽  
Rachel A. Loehman ◽  
Connie I. Constan ◽  
Rebekah R. Kneifel

Abstract Background Wildfires of uncharacteristic severity, a consequence of climate changes and accumulated fuels, can cause amplified or novel impacts to archaeological resources. The archaeological record includes physical features associated with human activity; these exist within ecological landscapes and provide a unique long-term perspective on human–environment interactions. The potential for fire-caused damage to archaeological materials is of major concern because these resources are irreplaceable and non-renewable, have social or religious significance for living peoples, and are protected by an extensive body of legislation. Although previous studies have modeled ecological burn severity as a function of environmental setting and climate, the fidelity of these variables as predictors of archaeological fire effects has not been evaluated. This study, focused on prehistoric archaeological sites in a fire-prone and archaeologically rich landscape in the Jemez Mountains of New Mexico, USA, identified the environmental and climate variables that best predict observed fire severity and fire effects to archaeological features and artifacts. Results Machine learning models (Random Forest) indicate that topography and variables related to pre-fire weather and fuel condition are important predictors of fire effects and severity at archaeological sites. Fire effects were more likely to be present when fire-season weather was warmer and drier than average and within sites located in sloped, treed settings. Topographic predictors were highly important for distinguishing unburned, moderate, and high site burn severity as classified in post-fire archaeological assessments. High-severity impacts were more likely at archaeological sites with southern orientation or on warmer, steeper, slopes with less accumulated surface moisture, likely associated with lower fuel moistures and high potential for spreading fire. Conclusions Models for predicting where and when fires may negatively affect the archaeological record can be used to prioritize fuel treatments, inform fire management plans, and guide post-fire rehabilitation efforts, thus aiding in cultural resource preservation.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Hyeon W. Park ◽  
Jae W. Park ◽  
Won B. Yoon

AbstractNovel algorithm to determine the least cost formulation of a surimi blend was developed using linear programming (LP). Texture properties and the unit cost of surimi blend at the target moisture content were used as constraint functions and the objective function, respectively. The mathematical models to describe the moisture content dependence of the ring tensile properties were developed using critical moisture content, and the model parameters were used for the least cost LP (LCLP) model. The LCLP model successfully predicted the quality of surimi blend. Sensitivity analysis was used to obtain an additional information when the perturbations of design variables are provided. A standard procedure to determine the least cost formulation for blending surimi with varied moisture contents was systematically developed.


2010 ◽  
Vol 10 (5) ◽  
pp. 2335-2351 ◽  
Author(s):  
D. Chang ◽  
Y. Song

Abstract. Biomass burning in tropical Asia emits large amounts of trace gases and particulate matter into the atmosphere, which has significant implications for atmospheric chemistry and climatic change. In this study, emissions from open biomass burning over tropical Asia were evaluated during seven fire years from 2000 to 2006 (1 March 2000–31 February 2007). The size of the burned areas was estimated from newly published 1-km L3JRC and 500-m MODIS burned area products (MCD45A1). Available fuel loads and emission factors were assigned to each vegetation type in a GlobCover characterisation map, and fuel moisture content was taken into account when calculating combustion factors. Over the whole period, both burned areas and fire emissions showed clear spatial and seasonal variations. The size of the L3JRC burned areas ranged from 36 031 km2 in fire year 2005 to 52 303 km2 in 2001, and the MCD45A1 burned areas ranged from 54 790 km2 in fire year 2001 to 148 967 km2 in 2004. Comparisons of L3JRC and MCD45A1 burned areas using ground-based measurements and other satellite data were made in several major burning regions, and the results suggest that MCD45A1 generally performed better than L3JRC, although with a certain degree of underestimation in forest areas. The average annual L3JRC-based emissions were 123 (102–152), 12 (9–15), 1.0 (0.7–1.3), 1.9 (1.4–2.6), 0.11 (0.09–0.12), 0.89 (0.63–1.21), 0.043 (0.036–0.053), 0.021 (0.021–0.023), 0.41 (0.34–0.52), 3.4 (2.6–4.3), and 3.6 (2.8–4.7) Tg yr−1 for CO2, CO, CH4, NMHCs, NOx, NH3, SO2, BC, OC, PM2.5, and PM10, respectively, whereas MCD45A1-based emissions were 122 (108–144), 9.3 (7.7–11.7), 0.63 (0.46–0.86), 1.1 (0.8–1.6), 0.11 (0.10–0.13), 0.54 (0.38–0.76), 0.043 (0.038–0.051), 0.033 (0.032–0.037), 0.39 (0.34–0.47), 3.0 (2.6–3.7), and 3.3 (2.8–4.0) Tg yr−1. Forest burning was identified as the major source of the fire emissions due to its high carbon density. Although agricultural burning was the second highest contributor, it is possible that some crop residue combustion was missed by satellite observations. This possibility is supported by comparisons with previously published data, and this result may be due to the small size of the field crop residue burning. Fire emissions were mainly concentrated in Indonesia, India, Myanmar, and Cambodia. Furthermore, the peak in the size of the burned area was generally found in the early fire season, whereas the maximum fire emissions often occurred in the late fire season.


2009 ◽  
Vol 9 (5) ◽  
pp. 20407-20428 ◽  
Author(s):  
M. Begoin ◽  
A. Richter ◽  
L. Kaleschke ◽  
X. Tian-Kunze ◽  
A. Stohl ◽  
...  

Abstract. Ozone Depletion Events (ODE) during polar springtime are a well known phenomenon in the Arctic and Antarctic boundary layer. They are caused by the catalytic destruction of ozone by halogens producing reactive halogen oxides like bromine monoxide (BrO). The key halogen bromine can be rapidly transferred into the gas phase in an autocatalytic process – the so called "Bromine Explosion". However, the exact mechanism, which leads to an initial bromine release as well as the influence of transport and chemical processes on BrO, is still not clearly understood. In this study, BrO measurements from the satellite instrument GOME-2 are used together with model calculations with the dispersion model FLEXPART and Potential Frost Flowers (PFF) maps to study a special arctic BrO event in March/April 2007, which could be tracked over many days and large areas. Full BrO activation was observed within one day east of Siberia with subsequent transport to the Hudson Bay. The event was linked to a cyclone with very high surface wind speeds which could have been involved in the production and the sustaining of aerosols providing the surface for BrO recycling within the plume. The evolution of the BrO plume could be well reproduced by FLEXPART calculations for a passive tracer indicating that the activated air mass was transported all the way from Siberia to the Hudson Bay without further activation at the surface. No direct link could be made to frost flower occurrence and BrO activation but enhanced PFF were observed a few days before the event in the source regions.


Author(s):  
Kellen Nelson ◽  
Daniel Tinker

Understanding how live and dead forest fuel moisture content (FMC) varies with seasonal weather and stand structure will improve researchers’ and forest managers’ ability to predict the cumulative effects of weather on fuel drying during the fire season and help identify acute conditions that foster wildfire ignition and high rates of fire spread. No studies have investigated the efficacy of predicting FMC using mechanistic water budget models at daily time scales through the fire season nor have they investigated how FMC may vary across space. This study addresses these gaps by (1) validating a novel mechanistic live FMC model and (2) applying this model with an existing dead FMC model at three forest sites using five climate change scenarios to characterize how FMC changes through time and across space. Sites include post-fire 24-year old forest, mature forest with high canopy cover, and mature forest affected by the mountain pine beetle with moderate canopy cover. Climate scenarios include central tendency, warm/dry, warm/wet, hot/dry, and hot/wet.


2018 ◽  
Vol 31 (11) ◽  
pp. 4225-4240 ◽  
Author(s):  
Joseph Sedlar

Abstract Springtime atmospheric preconditioning of Arctic sea ice for enhanced or buffered sea ice melt during the subsequent melt year has received considerable research focus. Studies have identified enhanced poleward atmospheric transport of moisture and heat during spring, leading to increased emission of longwave radiation to the surface. Simultaneously, these studies ruled out the role of shortwave radiation as an effective preconditioning mechanism because of relatively weak incident solar radiation, high surface albedo from sea ice and snow, and increased clouds during spring. These conclusions are derived primarily from atmospheric reanalysis, which may not always accurately represent the Arctic climate system. Here, top-of-atmosphere shortwave radiation observations from a state-of-the-art satellite sensor are compared with ERA-Interim reanalysis to examine similarities and differences in the springtime absorbed shortwave radiation (ASR) over the Arctic Ocean. Distinct biases in regional location and absolute magnitude of ASR anomalies are found between satellite-based measurements and reanalysis. Observations indicate separability between ASR anomalies in spring corresponding to anomalously low and high ice extents in September; the reanalysis fails to capture the full extent of this separability. The causes for the difference in ASR anomalies between observations and reanalysis are considered in terms of the variability in surface albedo and cloud presence. Additionally, biases in reanalysis cloud water during spring are presented and are considered for their impact on overestimating spring downwelling longwave anomalies. Taken together, shortwave radiation should not be overlooked as a contributing mechanism to springtime Arctic atmospheric preconditioning.


1989 ◽  
Vol 19 (11) ◽  
pp. 1483-1487 ◽  
Author(s):  
Z. Chrosciewicz

Moisture contents of organic forest-floor materials were studied by strata in a semimature jack pine (Pinusbanksiana Lamb.) stand in relation to their within-stand locations and changes in both duff moisture code and fine fuel moisture code, the two weather-based components of the Canadian Forest Fire Weather Index System. The resulting best-fitting curvilinear regressions (Y = aebX) of the duff moisture code showed distinctive patterns of variation so that both the surface and subsurface forest-floor strata were consistently more moist in stand openings than under stand canopy. An initial moisture inversion between the surface and subsurface forest-floor materials manifested itself near the start of the regressions wherever live Schreber's moss (Pleuroziumschreberi (Brit.) Mitt.) and litter were the combined surface materials; otherwise, pure surface litter was consistently drier than the subsurface materials. Combinations of all these materials down to mineral soil showed intermediate moisture contents both in stand openings and under stand canopy. In contrast, the best-fitting regressions of the fine fuel moisture code just for surface forest-floor strata were of the straight line (Y = a + bX) category and had generally lower r2 values than those for the corresponding curvilinear regressions (Y = aebX) of the duff moisture code.


1996 ◽  
Vol 6 (3) ◽  
pp. 125 ◽  
Author(s):  
JD White ◽  
KC Ryan ◽  
CC Key ◽  
SW Running

Burned forested areas have patterns of varying burn severity as a consequence of various topographic, vegetation, and meteorological factors. These patterns are detected and mapped using satellite data. Other ecological information can be abstracted from satellite data regarding rates of recovery of vegetation foliage and variation of burn severity on different vegetation types. Middle infrared wavelengths are useful for burn severity mapping because the land cover changes associated with burning increase reflectance in this part of the electromagnetic spectrum. Simple stratification of Landsat Thematic Mapper data define varying classes of burn severity because of changes in canopy cover, biomass removal, and soil chemical composition. Reasonable maps of burn severity are produced when the class limits of burn severity reflectance are applied to the entire satellite data. Changes in satellite reflectance over multiple years reveal the dynamics of vegetation and fire severity as low burn areas have lower changes in reflectance relative to high burn areas. This results as a consequence of how much the site was altered due to the burn and how much space is available for vegetation recovery. Analysis of change in reflectance across steppe, riparian, and forested vegetation types indicate that fires potentially increase biomass in steppe areas, while riparian and forested areas are slower to regrow to pre-fire conditions. This satellite-based technology is useful for mapping severely burned areas by exploring the ecological manifestations before and after fire.


Sign in / Sign up

Export Citation Format

Share Document