scholarly journals A Comparison of the Simulations and Observations for a Nearby Spiral Arm

Author(s):  
Martin Piecka ◽  
Ernst Paunzen

The analysis is focused on the ability of galactic open clusters to trace the spiral arms, based on the recent data releases from Gaia. For this, a simple 1D description of the motion of spiral arms and clusters is introduced. As next step, results are verified using a widely accepted kinematic model of the motion in spiral galaxies. As expected, both approaches show that open clusters older than about 100 Myr are bad tracers of spiral arms. The younger clusters (ideally < 30 Myr) should be used instead. This agrees with the most recent observational evidence. The latest maps of the diffuse interstellar bands are compared with the spiral structure of the Milky Way and the Antennae Galaxies. The idea of these bands being useful for studying a galactic structure cannot be supported based on the current data.

1998 ◽  
Vol 188 ◽  
pp. 293-294
Author(s):  
Chen Linfei

A circulation hypothesis of spiral galaxies is proposed here to explain their spiral structure: the spiral arm material is going to the galactic center along a spiral orbit and then ejects from the galactic center in the form of two-way jets in opposite directions and finally, the ejected jets return to the galaxy in the form of spiral arms again, thereby forming a closed circulatory system.


2021 ◽  
Vol 921 (2) ◽  
pp. L42
Author(s):  
V. S. Veena ◽  
P. Schilke ◽  
Á. Sánchez-Monge ◽  
M. C. Sormani ◽  
R. S. Klessen ◽  
...  

Abstract We report the discovery of a velocity coherent, kiloparsec-scale molecular structure toward the Galactic center region with an angular extent of 30° and an aspect ratio of 60:1. The kinematic distance of the CO structure ranges between 4.4 and 6.5 kpc. Analysis of the velocity data and comparison with the existing spiral arm models support that a major portion of this structure is either a subbranch of the Norma arm or an interarm giant molecular filament, likely to be a kiloparsec-scale feather (or spur) of the Milky Way, similar to those observed in nearby spiral galaxies. The filamentary cloud is at least 2.0 kpc in extent, considering the uncertainties in the kinematic distances, and it could be as long as 4 kpc. The vertical distribution of this highly elongated structure reveals a pattern similar to that of a sinusoidal wave. The exact mechanisms responsible for the origin of such a kiloparsec-scale filament and its wavy morphology remains unclear. The distinct wave-like shape and its peculiar orientation makes this cloud, named as the Gangotri wave, one of the largest and most intriguing structures identified in the Milky Way.


2020 ◽  
Vol 640 ◽  
pp. A72
Author(s):  
M. Riener ◽  
J. Kainulainen ◽  
J. D. Henshaw ◽  
H. Beuther

Knowledge about the distribution of CO emission in the Milky Way is essential to understanding the impact of the Galactic environment on the formation and evolution of structures in the interstellar medium. However, our current insight as to the fraction of CO in the spiral arm and interarm regions is still limited by large uncertainties in assumed rotation curve models or distance determination techniques. In this work we use the Bayesian approach from Reid et al. (2016, ApJ, 823, 77; 2019, ApJ, 885, 131), which is based on our most precise knowledge at present about the structure and kinematics of the Milky Way, to obtain the current best assessment of the Galactic distribution of 13CO from the Galactic Ring Survey. We performed two different distance estimates that either included (Run A) or excluded (Run B) a model for Galactic features, such as spiral arms or spurs. We also included a prior for the solution of the kinematic distance ambiguity that was determined from a compilation of literature distances and an assumed size-linewidth relationship. Even though the two distance runs show strong differences due to the prior for Galactic features for Run A and larger uncertainties due to kinematic distances in Run B, the majority of their distance results are consistent with each other within the uncertainties. We find that the fraction of 13CO emission associated with spiral arm features ranges from 76 to 84% between the two distance runs. The vertical distribution of the gas is concentrated around the Galactic midplane, showing full-width at half-maximum values of ~75 pc. We do not find any significant difference between gas emission properties associated with spiral arm and interarm features. In particular, the distribution of velocity dispersion values of gas emission in spurs and spiral arms is very similar. We detect a trend of higher velocity dispersion values with increasing heliocentric distance, which we, however, attribute to beam averaging effects caused by differences in spatial resolution. We argue that the true distribution of the gas emission is likely more similar to a combination of the two distance results discussed, and we highlight the importance of using complementary distance estimations to safeguard against the pitfalls of any single approach. We conclude that the methodology presented in this work is a promising way to determine distances to gas emission features in Galactic plane surveys.


Author(s):  
Jim Henry ◽  
Mesut Yurukcu ◽  
George Nnanna

Universe created with the fundamental laws of science. Nature is lazy and needs to form with the least possible to be perfect. A natural pattern, such as pinecones, sunflowers, pineapples, and cacti, has a double spiral structure. Once we look at these plants' centers, we will see the seeds line up in spirals shape. The number of spirals whirling in each direction will give us the Fibonacci numbers. We can give more examples representing these natural patterns; however, one example is unique and remarkable. The similarities between spiral galaxies- Milky Way and hurricanes. Are they similar in every property or just in shape and rotational movements? What are the similarities between them? This short review article will try to find these questions' answers by reviewing some literature articles. The first part of this article gave some information about hurricanes and galaxies. The second of this article focused on the comparison between hurricanes and galaxies. Finally, we will conclude the article with our remarks.


2012 ◽  
Vol 8 (S292) ◽  
pp. 106-106
Author(s):  
L. G. Hou ◽  
J. L. Han

AbstractThe spiral structure of our Milky Way has not yet been well outlined. HII regions, giant molecular clouds (GMCs) and 6.7-GHz methanol masers are primary tracers for spiral arms. We collect and update the database of these tracers which has been used in Hou et al. (2009) for the spiral arms.The new database consists of ∼ 2000 HII regions, ∼ 1300 GMCs and ∼ 800 methanol masers (6.7 GHz). If the photometric or trigonometric distance for any tracer is available from the literature, we will adopt it. Otherwise, we have to use the kinematic distance. We modify the VLSR according to the newly determined solar motions (U0 = 10.27 km s−1, V0 = 15.32 km s−1 and W0 = 7.74 km s−1, Schönrich et al. 2010), then calculate the kinematic distances with a flat rotation curve (R0 = 8.3 kpc, θ0 = 239 km s−1, Brunthaler et al. 2011). Very important step is that we weight tracers according to the excitation parameters of HII regions or the masses of GMCs, and a constant weight for masers. All three kinds of tracers are used together to outline the spiral structure (Fig. 1). A contour and gray map is constructed after we made a Gaussian extension for the tracers with the amplitude of weighting parameter.


Author(s):  
Charles Francis ◽  
Erik Anderson

We describe the structure and composition of six major stellar streams in a population of 20 574 local stars in the New Hipparcos Reduction with known radial velocities. We find that, once fast moving stars are excluded, almost all stars belong to one of these streams. The results of our investigation have led us to re-examine the hydrogen maps of the Milky Way, from which we identify the possibility of a symmetric two-armed spiral with half the conventionally accepted pitch angle. We describe a model of spiral arm motions that matches the observed velocities and compositions of the six major streams, as well as the observed velocities of the Hyades and Praesepe clusters at the extreme of the Hyades stream. We model stellar orbits as perturbed ellipses aligned at a focus in coordinates rotating at the rate of precession of apocentre. Stars join a spiral arm just before apocentre, follow the arm for more than half an orbit, and leave the arm soon after pericentre. Spiral pattern speed equals the mean rate of precession of apocentre. Spiral arms are shown to be stable configurations of stellar orbits, up to the formation of a bar and/or ring. Pitch angle is directly related to the distribution of orbital eccentricities in a given spiral galaxy. We show how spiral galaxies can evolve to form bars and rings. We show that orbits of gas clouds are stable only in bisymmetric spirals. We conclude that spiral galaxies evolve toward grand design two-armed spirals. We infer from the velocity distributions that the Milky Way evolved into this form about 9 billion years ago (Ga).


2016 ◽  
Vol 11 (S321) ◽  
pp. 123-123
Author(s):  
P.A. Patsis

AbstractIn several grand design barred-spiral galaxies it is observed a second, fainter, outer set of spiral arms. Typical examples of objects of this morphology can be considered NGC 1566 and NGC 5248. I suggest that such an overall structure can be the result of two dynamical mechanisms acting in the disc. The bar and both spiral systems rotate with the same pattern speed. The inner spiral is reinforced by regular orbits trapped around the stable, elliptical, periodic orbits of the central family, while the outer system of spiral arms is supported by chaotic orbits. Chaotic orbits are also responsible for a rhomboidal area surrounding the inner barred-spiral region. In general there is a discontinuity between the two spiral structures at the corotation region.


Author(s):  
L. G. Hou

The spiral structure in the solar neighborhood is an important issue in astronomy. In the past few years, there has been significant progress in observation. The distances for a large number of good spiral tracers, i.e., giant molecular clouds, high-mass star-formation region masers, HII regions, O-type stars, and young open clusters, have been accurately estimated, making it possible to depict the detailed properties of nearby spiral arms. In this work, we first give an overview about the research status for the Galaxy’s spiral structure based on different types of tracers. Then the objects with distance uncertainties better than 15% and <0.5 kpc are collected and combined together to depict the spiral structure in the solar neighborhood. Five segments related with the Perseus, Local, Sagittarius-Carina, Scutum-Centaurus, and Norma arms are traced. With the large dataset, the parameters of the nearby arm segments are fitted and updated. Besides the dominant spiral arms, some substructures probably related to arm spurs or feathers are also noticed and discussed.


Sign in / Sign up

Export Citation Format

Share Document