scholarly journals Profiling of Metabolites of Bacillus spp. and Their Application in Sustainable Plant Growth Promotion and Biocontrol

2021 ◽  
Vol 5 ◽  
Author(s):  
Izzah Shahid ◽  
Jun Han ◽  
Sharoon Hanooq ◽  
Kauser A. Malik ◽  
Christoph H. Borchers ◽  
...  

Bacillus spp. are well-characterized as efficient bioinoculants for sustainable plant growth promotion and biocontrol of phytopathogens. Members of this spp. exhibit the multifaceted beneficial traits that are involved in plant nutrition and antimicrobial activities against phytopathogens. Keeping in view their diverse potential, this study targeted the detailed characterization of three root-colonizing Bacillus strains namely B. amyloliquefaciens, B. subtilis, and B. tequilensis, characterized based on 16S rRNA sequencing homology. The strains exhibited better plant growth promotion and potent broad-spectrum antifungal activities and exerted 43–86% in-vitro inhibition of growth of eight fungal pathogens. All strains produced indole acetic acid (IAA) in the range of 0.067–0.147 μM and were positive for the production of extracellular enzymes such as cellulase, lipase, and protease. Ultra-performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (UPLC-ESI-MS/MS) analysis revealed the production of antifungal metabolites (AFMs) such as surfactins, iturins, fengycins, macrolactins, bacillomycin-D, and catechol-based siderophore bacillibactin which were further confirmed by amplifying the genes involved in the biosynthesis of these antimicrobial lipopeptides. When compared for the amounts of different cyclic-peptides produced by three Bacillus strains, B. amyloliquefaciens SB-1 showed the most noticeable amounts of all the antifungal compounds. Plant experiment results revealed that inoculation with phytohormone producing Bacillus spp. strains demonstrated substantial growth improvement of wheat biomass, number of spikes, and dry weight of shoots and roots. Results of this study indicate the biocontrol and biofertilizer potential of Bacillus spp. for sustainable plant nutrient management, growth promotion, and effective biocontrol of crop plants, particularly cultivated in the South Asian region.

2020 ◽  
Vol 21 (22) ◽  
pp. 8740
Author(s):  
Daria Chlebek ◽  
Artur Pinski ◽  
Joanna Żur ◽  
Justyna Michalska ◽  
Katarzyna Hupert-Kocurek

Endophytic bacteria hold tremendous potential for use as biocontrol agents. Our study aimed to investigate the biocontrol activity of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against Rhizoctonia solani W70, Colletotrichum dematium K, Sclerotinia sclerotiorum K2291, and Fusarium avenaceum. In addition, features crucial for biocontrol, plant growth promotion, and colonization were assessed and linked with the genome sequences. The in vitro tests showed that BRZ63 significantly inhibited the mycelium growth of all tested pathogens and stimulated germination and growth of oilseed rape seedlings treated with fungal pathogens. The BRZ63 strain can benefit plants by producing biosurfactants, siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia as well as phosphate solubilization. The abilities of exopolysaccharide production, autoaggregation, and biofilm formation additionally underline its potential to plant colonization and hence biocontrol. The effective colonization properties of the BRZ63 strain were confirmed by microscopy observations of EGFP-expressing cells colonizing the root surface and epidermal cells of Arabidopsis thaliana Col-0. Genome mining identified many genes related to the biocontrol process, such as transporters, siderophores, and other secondary metabolites. All analyses revealed that the BRZ63 strain is an excellent endophytic candidate for biocontrol of various plant pathogens and plant growth promotion.


2012 ◽  
pp. 525-532 ◽  
Author(s):  
S. Velivelli ◽  
E. O'Herlihy ◽  
B. Janczura ◽  
B. Doyle Prestwich ◽  
J. Ghyselinck ◽  
...  

2017 ◽  
Vol 9 (3) ◽  
pp. 1310-1316
Author(s):  
Gurjot Kaur ◽  
Poonam Sharma ◽  
Deepika Chhabra ◽  
Kailash Chand ◽  
Gurjit Singh Mangat

The present investigation was carried out to exploit bacterial endophytes associated with root and leaf tissue of rice plant for plant growth promotion (PGP) and colonization study in vitro. Total 10 endophytic bacterial isolates (Pseudomonas sp.) were evaluate for PGP traits like P solubilization, production of Indole acetic acid (IAA), siderophore, ACC deaminase, protease, cellulase, fluorescent pigment, urease and denitrification activity. Out of 10 endophytic bacteria 30 %, 60 %, 20 %, 70 %, 10 % and 10 % were positive for siderophore, protease, cellulase, fluorescent pigment, urease and denitrification respectively. Maximum IAA production was recorded with isolate LRBLE7 (18.8 μgml-1) followed by LRBRE4 (16.0 μgml-1) and maximum P-solubilization was recorded with isolate LRBRE4 (5.8 mg 100 ml-1) followed by LRBLE7 (4.4 mg 100 ml-1). ACC deaminase production was recorded with isolate LRBLE6 (O.D=0.352 nm) followed by LRBRE5 (O.D=0.324nm). Three potential isolates (LRBRE4, LRBRE6 and LRBLE7) were selected on the basis of multiple PGP traits and were subjected to colonization study of rice seedling in vitro. Potential bacterial isolates can be exploited for improving growth and productivity in rice under sustainable management system.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Francesca Mapelli ◽  
Ramona Marasco ◽  
Eleonora Rolli ◽  
Marta Barbato ◽  
Hanene Cherif ◽  
...  

Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres ofSalicorniaplants and bulk soils were collected fromSebkhetandChotthypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated withSalicorniaroot system. A large collection of 475 halophilic and halotolerant bacteria was established fromSalicorniarhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. TwentyHalomonasstrains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activitiesin vitroat 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using agfp-labelled strain it was possible to demonstrate thatHalomonasis capable of successfully colonisingSalicorniaroots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands.


2021 ◽  
Vol 11 ◽  
Author(s):  
Francisco Massot ◽  
Panagiotis Gkorezis ◽  
Jonathan Van Hamme ◽  
Damian Marino ◽  
Bojana Spirovic Trifunovic ◽  
...  

The large-scale use of the herbicide glyphosate leads to growing ecotoxicological and human health concerns. Microbe-assisted phytoremediation arises as a good option to remove, contain, or degrade glyphosate from soils and waterbodies, and thus avoid further spreading to non-target areas. To achieve this, availability of plant-colonizing, glyphosate-tolerant and -degrading strains is required and at the same time, it must be linked to plant-microorganism interaction studies focusing on a substantive ability to colonize the roots and degrade or transform the herbicide. In this work, we isolated bacteria from a chronically glyphosate-exposed site in Argentina, evaluated their glyphosate tolerance using the minimum inhibitory concentration assay, their in vitro degradation potential, their plant growth-promotion traits, and performed whole genome sequencing to gain insight into the application of a phytoremediation strategy to remediate glyphosate contaminated agronomic soils. Twenty-four soil and root-associated bacterial strains were isolated. Sixteen could grow using glyphosate as the sole source of phosphorous. As shown in MIC assay, some strains tolerated up to 10000 mg kg–1 of glyphosate. Most of them also demonstrated a diverse spectrum of in vitro plant growth-promotion traits, confirmed in their genome sequences. Two representative isolates were studied for their root colonization. An isolate of Ochrobactrum haematophilum exhibited different colonization patterns in the rhizoplane compared to an isolate of Rhizobium sp. Both strains were able to metabolize almost 50% of the original glyphosate concentration of 50 mg l–1 in 9 days. In a microcosms experiment with Lotus corniculatus L, O. haematophilum performed better than Rhizobium, with 97% of glyphosate transformed after 20 days. The results suggest that L. corniculatus in combination with to O. haematophilum can be adopted for phytoremediation of glyphosate on agricultural soils. An effective strategy is presented of linking the experimental data from the isolation of tolerant bacteria with performing plant-bacteria interaction tests to demonstrate positive effects on the removal of glyphosate from soils.


2008 ◽  
Vol 54 (4) ◽  
pp. 248-258 ◽  
Author(s):  
Russell K. Hynes ◽  
Grant C.Y. Leung ◽  
Danielle L.M. Hirkala ◽  
Louise M. Nelson

The use of beneficial soil microorganisms as agricultural inputs for improved crop production requires selection of rhizosphere-competent microorganisms with plant growth-promoting attributes. A collection of 563 bacteria originating from the roots of pea, lentil, and chickpea grown in Saskatchewan was screened for several plant growth-promoting traits, for suppression of legume fungal pathogens, and for plant growth promotion. Siderophore production was detected in 427 isolates (76%), amino-cyclopropane-1-carboxylic acid (ACC) deaminase activity in 29 isolates (5%), and indole production in 38 isolates (7%). Twenty-six isolates (5%) suppressed the growth of Pythium sp. strain p88-p3, 40 isolates (7%) suppressed the growth of Fusarium avenaceum , and 53 isolates (9%) suppressed the growth of Rhizoctonia solani CKP7. Seventeen isolates (3%) promoted canola root elongation in a growth pouch assay, and of these, 4 isolates promoted the growth of lentil and one isolate promoted the growth of pea. Fatty acid profile analysis and 16S rRNA sequencing of smaller subsets of the isolates that were positive for the plant growth-promotion traits tested showed that 39%–42% were members of the Pseudomonadaceae and 36%–42% of the Enterobacteriaceae families. Several of these isolates may have potential for development as biofertilizers or biopesticides for western Canadian legume crops.


2017 ◽  
Vol 8 ◽  
Author(s):  
Shyam L. Kandel ◽  
Andrea Firrincieli ◽  
Pierre M. Joubert ◽  
Patricia A. Okubara ◽  
Natalie D. Leston ◽  
...  

1998 ◽  
Vol 44 (6) ◽  
pp. 528-536 ◽  
Author(s):  
V K Sharma ◽  
J Nowak

The potential utilization of a plant growth promoting rhizobacterium, Pseudomonas sp. strain PsJN, to enhance the resistance of tomato transplants to verticillium wilt was investigated. Plant growth and disease development were tested on the disease-susceptible cultivar Bonny Best after Verticillium dahliae infection of tissue culture plantlets bacterized in vitro (by co-culturing with the bacterium) and seedlings bacterized in vivo (after 3 weeks growth in the greenhouse). Significant differences in both disease suppression and plant growth were obtained between in vitro bacterized and nonbacterized (control) plants. The degree of protection afforded by in vitro bacterization depended on the inoculum density of V. dahliae; the best and worst protection occurred at the lowest (103 conidia ·mL-1) and highest (106 conidia ·mL-1) levels, respectively. In contrast, the in vivo bacterized tomatoes did not show plant growth promotion when compared to the nonbacterized control plants. When challenged with Verticillium, significant growth differences between in vivo bacterized plants (26.8% for shoot height) and nonbacterized controls were only seen at the 3rd week after inoculation. Compared with the in vitro inoculation, there was no delay in the verticillium wilt symptom expression, even at the lowest concentration of V. dahliae, by in vivo PsJN inoculation. These results suggest that endophytic colonization of tomato tissues is required for the Verticillium-resistance responses. Plant growth promotion preceeds the disease-resistance responses and may depend on the colonization thresholds and subsequent sensitization of hosts.Key words: Pseudomonas sp., plant growth promoting rhizobacterium, Verticillium dahliae, tomato, colonization, plant growth promotion, disease suppression.


1997 ◽  
Vol 43 (4) ◽  
pp. 354-361 ◽  
Author(s):  
V. K. Pillay ◽  
J. Nowak

The effects of inoculum density (0, 4.6 × 107, 4.2 × 108, and 8.8 × 108 cfu∙mL−1), temperature (10, 20, and 30 °C), and plant genotype (cultivars Celebrity, Blazer, Scotia, and Mountain Delight) on bacterial colonization and plant growth promotion were investigated in a gnotobiotic system. An in vitro dual culture of tomato (Lycopersicon esculentum L.) plantlets and a Pseudomonas sp., strain PsJN, were used. Epiphytic (external) and endophytic (internal) bacterial populations were determined to evaluate plantlet colonization. Shoot and root biomass of bacterized plantlets was significantly higher (p ≤ 0.05) than that of nonbacterized controls. Growth promotion was best with inoculum densities of 3 × 108 – 7 × 108 cfu∙mL−1 at 20 °C, particularly in the early maturing cultivars Blazer and Scotia. Lower inoculum densities were required to maximize root growth (approximately 1 × 108 cfu∙mL−1) than shoot growth (approximately 3 × 108 cfu∙mL−1). Shoot surface populations did not vary with inoculum density or temperature, but the bacterium colonized the shoot exterior of cultivars Celebrity, Mountain Delight, and Scotia better than cultivar Blazer. The root surface populations increased linearly with increasing inoculum density (within a range of 107–108 cfu∙mL−1), decreased with increasing temperatures (from 10 to 30 °C), and were higher for the main season cultivar Celebrity than for cultivars Blazer, Scotia, and Mountain Delight. Populations of shoot endophytes did not vary with initial inoculum density or genotype but were affected by temperature; the highest colonization was at 10 °C. The number of root endophytes was also highest at 10 °C at the inoculum density of approximately 4 × 108 cfu∙mL−1 and did not vary with genotypes. The experiments clearly indicate that there was no relationship between root surface colonization and plant growth promotion. However, the range of inoculum levels (3 × 108 – 7 × 108 cfu∙mL−1) that promoted colonization of the inner root tissues (endophytic) also best promoted plant growth. A possible biostimulation threshold within the tissues of the inoculated plants under conditions favourable to the growth of tomato is proposed.Key words: Pseudomonas sp., tomato, colonization, growth promotion.


Sign in / Sign up

Export Citation Format

Share Document