scholarly journals Effect of Microwave Disinfection on Transverse Strength and Hardness of Acrylic Resin Denture Base Materials

2011 ◽  
Vol 11 (2) ◽  
pp. 284-291
Author(s):  
Alaa Al-Saraj ◽  
Munther Kazanji ◽  
Ghada Abdul-Rahman
2019 ◽  
Vol S (1) ◽  
pp. 7-10
Author(s):  
Ahmed Asim Saeed Al-Ali ◽  
◽  
Ammar k. Al-Noori ◽  
Amer A. Taqa ◽  
◽  
...  

Objectives: Compare tensile and transverse strength of new copolymers for denture base. Materials and methods: The specimens were prepared from heat cured acrylic resin with three types of additives: Acryester B, Ethoxycarbonylethylene, and Propenoic acid at a percentage of 5% and 10%. The tensile and transverse strains were tested, recorded and compared. Results: The analysis of variance display statistically significant difference. The p-value was 0.001 for each of tensile and transverse strain tests. Conclusions: The tensile strength of the novel copolymers increased. The transverse strength of some of the novel copolymers increased.


2018 ◽  
Vol 15 (4) ◽  
pp. 449-454
Author(s):  
Baghdad Science Journal

This work aims to investigate the tensile and compression strengths of heat- cured acrylic resin denture base material by adding styrene-butadiene (S- B) to polymethyl methacrylate (PMMA). The most well- known issue in prosthodontic practice is fracture of a denture base. All samples were a blend of (90%, 80%) PMMA and (10%, 20%) S- B powder melted in Oxolane (Tetra hydro furan). These samples were chopped down into specimens of dimensions 100x10x2.5mm to carry out the requirements of tensile tests. The compression strength test specimens were shaped into a cylinder with dimensions of 12.7mm in diameter and 20mm in length. The experimental results show a significant increase in both tensile and compression strengths when compared to control (standard) results for the preparation material.


2008 ◽  
Vol 9 (4) ◽  
pp. 67-74 ◽  
Author(s):  
Behnaz Ebadian ◽  
Mohammad Razavi ◽  
Solmaz Soleimanpour ◽  
Ramin Mosharraf

Abstract Aim Controversy continues regarding the biocompatibility of denture base materials. One method to evaluate the biocompatibility of materials is in an animal study. Using dogs as subjects, the purpose of this study was to evaluate the vestibular tissue reaction to cobalt chromium (Co-Cr), heat cure acrylic resin, and acrylic resin mixed with aluminum oxide (Al2O3) compared with a control group using the histopathologic method. Methods and Materials Twelve disk shape samples (2 mm × 8 mm) in four groups of Co-Cr, acrylic resin, acrylic resin mixed with a 20% weight ratio of Al2O3, and a control group (Teflon) were fabricated. In one stage surgery two samples of each material (8 samples) was implanted in the buccal vestibule of each dog (n=6), subcutaneously. At 45 and 90-day intervals, half of the samples were excised along with peripheral tissue to assess the presence of inflammation by grading on a scale from 0 to 3 and the presence of a fibrotic capsule using histological observations. Data were analyzed using the Kruskal-Wallis, Mann-Whitney, and Tau b Kendal tests. Results Tissue reaction between Co-Cr and the control group was significant (P=0.02), but it was not significant between other groups. There was no significant difference between the 45 and 90-day postinsertion samples. The formation of fibrotic capsule groups was significant (P=0.01). It was significant between the Co-Cr and acrylic resin groups (P=0.01) and the acrylic resin and control groups (P=0.01). Conclusion The Co-Cr group was more toxic than the other groups. The inflammation increased during time. The inflammation in two acrylic groups was greater than the control and less than the Co-Cr group. The formation of fibrotic capsule, except in the acrylic resin with Al2O3 group, increased over time. Clinical Significance Co-Cr alloys are toxic and can produce damage to living tissue. Heat cure acrylic resin materials have less toxicity, and their use is safer than Co-Cr alloys. Citation Ebadian B, Razavi M, Soleimanpour S, Mosharraf R. Evaluation of Tissue Reaction to Some Denture-base Materials: An Animal Study. J Contemp Dent Pract 2008 May; (9)4:067-074.


2007 ◽  
Vol 35 (12) ◽  
pp. 930-933 ◽  
Author(s):  
Camilo Machado ◽  
Eliana Sanchez ◽  
Shereen S. Azer ◽  
Juan M. Uribe

2015 ◽  
Vol 3 (3) ◽  
pp. 455-461
Author(s):  
Mohamed M. El-Zawahry ◽  
Ahmed A. El-Ragi ◽  
Mohamed I. El-Anwar ◽  
Eman Mostafa Ahmed Ibraheem

AIM: The objective of the present study was to evaluate the effect of different denture base materials on the stress distribution in TMJ articular disc (AD) in complete denture wearers.MATERIAL AND METHODS: Two three dimensional Finite Element (FEA) models of an individual temporomandibular joint (TMJ) were built on the basis CT scan. The FEA model consisted of four parts: the condyle, the articular disc, the denture base, and the articular eminence skull. Acrylic resin and chrome-cobalt denture base materials were studied. Static loading of 300N was vertically applied to the central fossa of the mandibular second premolar. Stress and strain were calculated to characterize the stress/strain patterns in the disc.RESULTS: The maximum tensile stresses were observed in the anterior and posterior bands of (AD) on load application with the two denture base materials. The superior boundaries of the glenoid fossa showed lower stress than those on the inferior boundaries facing the condyle.CONCLUSIONS: Within the limitations of the present study it may be concluded that: The denture base material may a have an effect in stress-strain pattern in TMJ articular disc. The stiffer denture base material, the better the distribution of the load to the underling mandibular supporting structures & reducing stresses induced in the articular disc.


2019 ◽  
Vol 10 (2) ◽  
pp. 1464-1469
Author(s):  
Adnan R. Al Assal ◽  
Abdalbaset A Fatalla ◽  
Mohammed Moudhaffar ◽  
Ghasak H Jani

The general upgrading of polymer denture base material and research continuously looking for ideal restorative dental material with better properties, adequate esthetic properties, less expensive and easier to handle material to develop photo polymerization dental materials. This study was conducted to evaluate the effect of addition polyamide on mechanical microparticle properties light cure denture base material. One hindered sixty specimens from light-cured acrylic resin (Aurora). The divided mainly into four groups according to test used (Transverse strength test, impact strength test, hardness test and tensile strength test) with 40 specimens for each group. The results show an increase in Transverse strength, impact strength, hardness and tensile strength in all experimental group when compared to control group the highest mean values for all tests included in the study appeared in group B 1% polyamide. The addition of polyamide microparticle improves transverse, tensile, impact strength and hardness properties of denture base material.


2018 ◽  
Vol 2 (2) ◽  
pp. 150-161
Author(s):  
Bestun Akram ◽  
Rizgar Hasan

Adequate retention is a basic requirement for the acceptance of complete denture. The aim of this study was to evaluate the retention quality of fluid denture base materials and compare it with conventional acrylic denture base materials Method: Sixteen edentulous male patients with an age 45-60 years participated in the study. For each patient two denture bases were constructed, one of them made from fluid denture base materials and the other made from hot acrylic denture base materials. A specially designed strain gauge measuring device was used to measure the force required to dislodge the two dentures from basal seats. Six measurements of retention of newly inserted denture base were recorded for each patient (three for maxillary acrylic denture base and three for maxillary fluid denture base). Results: The results of the retention test showed that the fluid denture base materials required more force in order to dislodge denture than the heat cure denture base materials, which means a significant improvement in retention quality obtained by fluid denture base materials. Conclusions: It has appeared that the fluid acrylic denture base materials produce denture base material with excellent retentive efficiency to the underlying tissue when compared to conventional denture base materials.


2020 ◽  
Vol 1 (3) ◽  
pp. 01-05
Author(s):  
Ibrahim M. Hamouda ◽  
Alaa Makke

Objectives: Effect and correlation of aluminum oxide powder on degree of conversion, residual monomer and flexural properties of heat-cured acrylic resin specimens were studied. Materials and methods: Heat-cured acrylic resin and aluminum oxide powders were used. Specimens of specific dimensions from unreinforced and reinforced acrylic resins using stainless steel plates were prepared. Degree of conversion was determined using FTIR Spectrometer. Released monomer was measured using isocratic high-performance liquid chromatography. Flexural strength was tested using three point-bending test. Results: Aluminum oxide reinforcement showed increased degree of conversion than that of the unreinforced specimens. Released monomer from reinforced specimens was lower than that of unreinforced specimens. Deflection at fracture of reinforced specimens was lower than that of unreinforced specimens. Flexural strength was increased by addition of 2.5 % and 5% aluminum oxide. There was a positive correlation between degree of conversion and flexural strength. There was a negative correlation between degree of conversion and monomer release. Conclusions: Aluminum oxide powder increased degree of conversion and flexural strength but reduced monomer release and deflection at fracture. There was a positive correlation between degree of conversion and flexural strength. There was a negative correlation between degree of conversion and monomer release. Clinical relevance: Aluminum oxide powder could reinforce the week acrylic resin denture base materials. Degree of monomer conversion during processing of acrylic resin denture base materials is very critical in determination of monomer release and mechanical properties of acrylic resin in service.


Sign in / Sign up

Export Citation Format

Share Document