scholarly journals The effect of polyamide microparticles addition on some mechanical prop-erties of light-cured acrylic resin

2019 ◽  
Vol 10 (2) ◽  
pp. 1464-1469
Author(s):  
Adnan R. Al Assal ◽  
Abdalbaset A Fatalla ◽  
Mohammed Moudhaffar ◽  
Ghasak H Jani

The general upgrading of polymer denture base material and research continuously looking for ideal restorative dental material with better properties, adequate esthetic properties, less expensive and easier to handle material to develop photo polymerization dental materials. This study was conducted to evaluate the effect of addition polyamide on mechanical microparticle properties light cure denture base material. One hindered sixty specimens from light-cured acrylic resin (Aurora). The divided mainly into four groups according to test used (Transverse strength test, impact strength test, hardness test and tensile strength test) with 40 specimens for each group. The results show an increase in Transverse strength, impact strength, hardness and tensile strength in all experimental group when compared to control group the highest mean values for all tests included in the study appeared in group B 1% polyamide. The addition of polyamide microparticle improves transverse, tensile, impact strength and hardness properties of denture base material.

2020 ◽  
Vol 04 (1) ◽  
pp. 27-40
Author(s):  
Jaymin Taher ◽  
Salem Salem

Poly methyl methacrylate (PMMA) is one of the most widely used materials in modern prosthodontics. It is widely known due to its simplicity in use and acceptable aesthetic. A new concept of polymerization fluid resin technique was instead of heat and gypsum material. Forty specimens were prepared from two brands of fluid acrylic resin. The samples were divided into two groups, the first one was the control while the other group was incorporated with silver nanoparticles(modified). The tests performed were impact strength, transverse strength, color stability and candida retention ability on the samples. 10 samples for each test were used. The results showed that modified group had significantly higher impact strength than the control group. There was non-significant difference between group of modified fluid acrylic and control group. Regarding color stability, there were highly significant color change after 10 days of immersion in the tea solution for the modified group the results of the biological test showed that the candida retention of the control group was significantly higher than modified group. Within the limitation of this study it can be concluded that addition of silver nanoparticles has resulted in significant difference between control and modified group for impact strength test. While non-significant difference was seen for transverse strength test. In regard to color stability, showed enhancement in color stability for both before and after placement in tea solution. Addition of silver nanoparticles also caused reduction in candida albicans retention in the added samples.


2015 ◽  
Vol 3 (2) ◽  
pp. 68-73
Author(s):  
Riezka Hanafiah Putri ◽  
Zulkarnain Agus ◽  
Eni Rahmi

Heat-polymerized  acrylic  resins  is  the  most  used  denture  base  material  in  prosthodontics.  One  of  mechanical properties of acrylic resins is transverse strength. It represents the masticatory pressure that is applied to denture base. Black tea is the second largest consumed beverage in the world. The aim of this study was to investigate the effect of black tea beverage on transverse strength of heat-polymerized acrylic resins. A total of 24 heat-polymerized acrylic resin plates (65×10×2,5 mm) were immersed in black tea beverage for 1, 4, and 20 days as treatment group and in aquadest for 1, 4, and 20 days as control group. The transverse strength of  acrylic samples were measured by three–point bending test by universal testing machine. Data were statistically analyzed using Independent t test. The transverse strength values of acrylic resin immersed in black tea beverage had no significant differences to the transverse strength values of acrylic resin immersed in aquadest with similar immersion time (p>0,05). There was no effect of black tea beverage on transverse strength of heat-polymerized acrylic resins. Immersion time decrease the transverse strength of heat-polymerized acrylic resins due to water sorption. Keywords: Heat-polymerized acrylic resins, black tea, transverse strength


2018 ◽  
Vol 30 (2) ◽  
pp. 5-9
Author(s):  
Zahraa S. Abed karkosh ◽  
Basima M.A. Hussien

Background: acrylic resin denture base consider a common denture base material for its acceptable cost, aesthetic and easy processing but still has disadvantages including easy of fracture and low impact strength. Material and method: The experimental group was prepared by addition of 15% phosphoric acid 2-hydroxyethyl methacrylate ester (PA2HEME) with polymethyl methacrylate monomer; the experimental groups was compared with the control one. The specimens were prepared according to ADA specification No. 12 with dimension 65 mm x 10 mm x2.5 mm (length x width x thickness respectively). The prepared specimens were tested by three-point flexural strength utilizing Instron Universal Testing Machine (WDW, Layree Technology Co.), Shore D hardness tester used to measure hardness test. Statistical analysis used student T- test, mean and standard deviation. Results: The result of PA2HEME group showed high significant reduction comparing to the control group for both transverse strength and hardness test. Conclusion: Mixing 15% of PA2HEME with 85% methyl methacrylate (MMA) can reduce the mechanical properties of new modified polymethyl methacrylate (PMMA) acrylic resin.


2018 ◽  
Vol 30 (3) ◽  
pp. 189
Author(s):  
Actara Rahmadita ◽  
Dwi Tjahyaning Putranti

Pendahuluan: Resin akrilik polimerisasi panas (RAPP) merupakan bahan basis gigi tiruan yang paling banyak digunakan, namun memiliki sifat kekuatan tarik dan tekan yang rendah, sehingga diperlukan modifikasi dengan penambahan bahan penguat pada RAPP berupa aluminium oksida (Al2O3) atau alumina. Tujuan penelitian untuk menganalisi pengaruh penambahan aluminium oksida pada bahan basis gigi tiruan RAPP terhadap kekuatan tarik dan tekan. Metode: Jenis penelitian eksperimental laboratoris. Sebanyak 25 sampel berbentuk flat dumbbell shaped berukuran 60x12x3,9 (mm) untuk uji kekuatan tarik dan 25 sampel  berbentuk balok dengan ukuran 10x10x4 (mm) untuk uji kekuatan tekan. Pencampuran bubuk resin-aluminium oksida konsentasi 0,5%, 1,5%, 2,5% dan 3,5% dengan cairan resin dilakukan secara manual. Sampel direndam dalam air dan dimasukkan ke dalam inkubator. Uji dilakukan menggunakan universal testing machine dengan beban 1000N dan kecepatan crosshead 1mm/menit. Data dianalisis dengan uji ANOVA satu arah dan uji LSD. Hasil: Nilai kekuatan tarik kelompok kontrol dan keempat kelompok perlakuan penambahan aluminium oksida 0,5%, 1,5%, 2,5 %, 3,5% berturut turut adalah 50,867 MPa, 47,895 MPa, 45,107 MPa, 42,476 MPa, dan 39,753 MPa; sedangkan nilai kekuatan tekan kelompok kontrol dan keempat kelompok perlakuan penambahan aluminium oksida 0,5%, 1,5%, 2,5%, 3,5% berturut turut adalah 88,267 MPa, 106,085 MPa, 122,283 MPa, 135,367 MPa, dan 156,571 MPa. Penambahan bubuk aluminium oksida pada RAPP dapat menurunkan kekuatan tarik dan meningkatkan kekuatan tekan secara signifikan (p=0,0001 (p<0,05)), seiring dengan meningkatnya jumlah konsentrasi aluminium oksida yang ditambahkan. Simpulan: Penambahan aluminium oksida pada bahan basis gigi tiruan resin akrilik polimerisasi panas berpengaruh terhadap kekuatan tarik dan tekan.Kata kunci: Resin akrilik polimerisasi panas, aluminium oksida, kekuatan tarik, kekuatan tekan. ABSTRACT            Introduction: Heat-polymerised acrylic resin (HPAR) is the most widely used denture base material but has a low tensile and compressive strength thus modification is needed by adding reinforcement in the form of aluminium oxide (Al2O3) or alumina. The research objective was to analyse the effect of adding aluminium oxide on the tensile and compressive strength of HPAR denture base material. Methods: An experimental laboratory research was conducted towards the total of 25 samples in the form of flat dumbbell shape sized 60 x 12 x 3.9 mm for the tensile strength test, and 25 samples in the form of blocks with the size of 10 x 10 x 4 mm for the compressive strength test. The mixture of powdered aluminium oxide resin with the concentrations of 0.5%, 1.5%, 2.5%, and 3.5% with a liquid resin was carried out manually. The sample was then immersed in the water and put in an incubator. The test was performed using a universal testing machine with 1000 N loads and 1 mm/minute crosshead speed. Data obtained were analysed using the one-way ANOVA and LSD test. Result: The tensile strength values of the control group and all four treatment groups added with 0.5%, 1.5%, 2.5%, and 3.5% aluminum oxide were 50.867 MPa, 47.895 MPa, 45.107 MPa, 42.4476 MPa and 39.753 MPa respectively, while the compressive strength values were 88.267 MPa, 106.085, 122.283 MPa, 135.367 MPa, and 156.571 MPa consecutively. Addition of aluminium oxide powder to the HPAR can significantly reduce the tensile and compressive strength (p = 0.0001 (p < 0.05)) along with increasing concentration. Conclusion: Addition of aluminium oxide towards the HPAR denture base affected its tensile and compressive strength.Keywords: Heat-polymerised acrylic resin, aluminium oxide, tensile strength, compressive strength.


2021 ◽  
Vol 74 (9) ◽  
pp. 2293-2296
Author(s):  
Rafah Habib Abdul Amir

The aim: This study evaluates the effect of adding silanized halloysite nanotubes to the polymethylmethacrylate (PMMA) resin on its hardness, impact strength, transverse strength. Materials and methods: Three groups of acrylic resin were prepared, one group without HNTs, was used as a control group (A). The other two groups contained 0.3% (B), 0.6% wt of silanized halloysite nanotubes (C). For each one, hardness, impact strength and transverse strength were measured. One-way ANOVA and Tukey’s test were used for comparison. Results: Regarding to the impact test, there was no significant difference between 0.3% concentration and the pure (control) group while 0.6% concentration had significant decrease compared to the pure group and so between the 0.3% group 0.6% group. For the hardness test, the 0.3% group had no significant difference with the pure group and a significant difference between group 0.6% group and the pure group while there was a no significant decrease between the 0.3% and 0.6% group with the higher hardness mean in the 0.3% compared to 0.6% group. For the transverse strength, both 0.3% wt concentration and 0.6% concentration showed significant difference compared to the pure group and also between each other with the lowest impact strength in 0.6% group followed by 0.3% group with the highest transverse strength in the pure group. Conclusions: The silanation of halloysite nanotubes reduces the mechanical properties of the heat-cured acrylic denture base material. The more concentration of silanazed halloysite nanotubes is added, the more weakening occurs in the acrylic material relating to the hardness, transverse strength and impact strength.


2018 ◽  
Vol 15 (4) ◽  
pp. 449-454
Author(s):  
Baghdad Science Journal

This work aims to investigate the tensile and compression strengths of heat- cured acrylic resin denture base material by adding styrene-butadiene (S- B) to polymethyl methacrylate (PMMA). The most well- known issue in prosthodontic practice is fracture of a denture base. All samples were a blend of (90%, 80%) PMMA and (10%, 20%) S- B powder melted in Oxolane (Tetra hydro furan). These samples were chopped down into specimens of dimensions 100x10x2.5mm to carry out the requirements of tensile tests. The compression strength test specimens were shaped into a cylinder with dimensions of 12.7mm in diameter and 20mm in length. The experimental results show a significant increase in both tensile and compression strengths when compared to control (standard) results for the preparation material.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 230
Author(s):  
Salwa Omar Bajunaid ◽  
Bashayer H. Baras ◽  
Michael D. Weir ◽  
Hockin H. K. Xu

Denture stomatitis is a multifactorial pathological condition of the oral mucosa that affects up to 72% of denture wearers. It is commonly seen on the palatal mucosa and characterized by erythema on the oral mucosa that are in contact with the denture surface. The aim of this study was to incorporate 2-methacryloyloxyethyl phosphorylcholine (MPC) and dimethylaminohexadecyl methacrylate (DMAHDM) into a high impact polymethylmethacrylate heat-cured denture base acrylic resin as a potential treatment for denture stomatitis. We used a comparative study design to examine the effect of incorporating MPC as a protein repellent agent and DMAHDM as an antifungal agent to prevent the adherence of Candida albicans to the denture base material. The dual incorporation of MPC and DMAHDM reduced C. albicans biofilm colony-forming unit by two orders of magnitude when compared to the control group devoid of the bioactive agents. Although the addition of MPC and DMAHDM alone or in combination significantly reduced the flexural strength of the material, they showed reduced roughness values when compared to control groups. This new denture acrylic resin provides the benefit of enhancing C. albicans biofilm elimination through dual mechanisms of action, which could potentially reduce the prevalence of denture stomatitis.


2018 ◽  
Vol 11 (3) ◽  
pp. 1573-1581 ◽  
Author(s):  
Maha M. Turki ◽  
Faiza M. Abdul-Ameer

Scleral acrylic resin is widely used to synthesize ocular prosthesis. However, the properties of this material change over time, thus requiring the prosthesis to be refabricated. Many studies were conducted to improve these properties by reinforcing this material with nanoparticles. This study aims to evaluate the effect of silver nanoparticle powder on the mechanical properties (transverse flexural strength, impact strength, shear bond strength, surface microhardness, and surface roughness) of scleral acrylic resin used for ocular prostheses. Two concentrations were selected from the pilot study and evaluated for their effects on scleral acrylic resin properties. According to the pilot study, 0.01 and 0.02wt% AgNPs powder improved the transverse flexural strength, microhardness, and surface roughness compared with other percentages. The specimens in the main study were divided into (3) main groups, (50) specimens without additives (control group A), (50) experimental specimens (with 0.01wt% AgNPs group B), and (50) experimental specimens (with 0.02 wt% AgNPs group C). Each group was subdivided into (5) equal subgroups depending on the tests used. The data were studied using one way ANOVA and post hoc LSD test. At 0.01 wt% AgNPs addition, the mean values of transverse flexural strength insignificantly increased (p> 0.05), and those of impact strength and shear bond strength significantly increased (p< 0.05) compared with those of the control group. At 0.02 wt% AgNPs addition (group C), the mean value of transverse flexural strength significantly increased (p< 0.05), that of impact strength insignificantly increased (p> 0.05), and that of shear bond strength increased with high significance (p< 0.01) compared with those of the control group. Group C showed insignificant increase in the mean values of transverse flexural strength, impact strength, and shear bond strength (p. 0.05) compared with group B. The scleral acrylic resin added with 0.01 and 0.02 wt% AgNPs showed insignificant increase in microhardness and insignificant decrease in surface roughness. The addition of AgNPs powder in both concentrations improved the mechanical properties of scleral acrylic resin used for ocular prostheses.


2019 ◽  
Vol 1 (1) ◽  
pp. 35
Author(s):  
Pramudya Aditama ◽  
Erwan Sugiatno ◽  
Sabdayana Sabdayana

Acrylic resin is the most commonly used denture base material. However, it has a shortage of being easily broken. One way to resolve this problem is by adding polyethylene (PE) or glass fibers. The purpose of this research is to compare the transversal strength of PE and glass fibers from denture plate acrylic resin repair material. The experiment involved 32 plates of heat cure acrylic with the dimensions of 65 mm x 10 mm x 2.5 mm. The speciments were prepared to create a 3 mm gap and 45° bevel. Subjects were divided into 2 groups, each group containing 16 plates. Group I was reinforced with PE fiber and Group II was reinforced with glass fiber. All plates were soaked in distillation water for one day at 37 °C. Plates were tested for transverse strength with universal testing machine and all data were analyzed with independent t-tes at 95% confidence level. Macro photo analysis was used to observed the bond failure on fiber and resin. The mean of transverse strength (MPa) denture plate acrylic resin repair material reinforced with PE fiber was (67.38 ± 4.31) MPa, while glass fiber was (93.61 ± 6.14) MPa. Independent t-tes showed that type of fiber had a significant effect (p<0.05). Thus, it is possible to conclude that addition of glass fibers in denture plate acrylic resin repair material increased the transverse strength and made it stronger than those added with PE fibers.


Sign in / Sign up

Export Citation Format

Share Document