scholarly journals Estimation of Model Parameters, for Torsional Vibration Analysis ofa Turbo-Generator Unit with Reference to Mosul Gas-Turbine Station

2015 ◽  
Vol 23 (2) ◽  
pp. 91-116
Author(s):  
Dr.F. Yahya ◽  
Dr.Z. Mohammad ◽  
Dr.S. Ali
2010 ◽  
Vol 34-35 ◽  
pp. 1082-1087 ◽  
Author(s):  
Cheng Bing He ◽  
Cheng Xing ◽  
Jian Shen

In order to solve nonlinear system torsion response of turbo-generator unit, an increment transfer matrix method based on step-by-step integration method and traditional transfer matrix method was put forward. The method can be directly used to analyze nonlinear differential equations. Combined with Riccati method, the increment transfer matrix method was used in a multi-mass model. And matrix equations calculating the responses of torsional vibrations were deduced. Torsional vibration resulted from the faults of short circuit and asynchronous synchronization of 600MW steam turbo-generator unit were discussed in this work by using the increment transfer matrix method which can also extend the application of transfer matrix method in nonlinear field.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012022
Author(s):  
Wenfang Cai ◽  
Guangyao Ying ◽  
Weijun Li ◽  
Zaihua Wang

Abstract Abstract.This paper introduces the serious crack accident of the rotor of a 600 MW turbo-generator unit in Vietnam, which leads to the rotor scrapped. After excluding the material and design reasons, it is considered that the electrical torque is the possibility. Through the operation parameters and theoretical calculation of the unit, the fault reason is positioned as Sub-synchronous resonance. The most important criterion is that the vibration of Unit 1 increases simultaneously with that of Unit 2, which is physically isolated from Unit 1. Further theoretical calculation shows that the natural frequencies of torsional vibration are 13.74 Hz, 26.23 Hz and 30.30 Hz, which are complementary to the grid frequency at that time cause of the change of grid structure.


Author(s):  
Christopher J. Arthurs ◽  
Nan Xiao ◽  
Philippe Moireau ◽  
Tobias Schaeffter ◽  
C. Alberto Figueroa

AbstractA major challenge in constructing three dimensional patient specific hemodynamic models is the calibration of model parameters to match patient data on flow, pressure, wall motion, etc. acquired in the clinic. Current workflows are manual and time-consuming. This work presents a flexible computational framework for model parameter estimation in cardiovascular flows that relies on the following fundamental contributions. (i) A Reduced-Order Unscented Kalman Filter (ROUKF) model for data assimilation for wall material and simple lumped parameter network (LPN) boundary condition model parameters. (ii) A constrained least squares augmentation (ROUKF-CLS) for more complex LPNs. (iii) A “Netlist” implementation, supporting easy filtering of parameters in such complex LPNs. The ROUKF algorithm is demonstrated using non-invasive patient-specific data on anatomy, flow and pressure from a healthy volunteer. The ROUKF-CLS algorithm is demonstrated using synthetic data on a coronary LPN. The methods described in this paper have been implemented as part of the CRIMSON hemodynamics software package.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
K. S. Sultan ◽  
A. S. Al-Moisheer

We discuss the two-component mixture of the inverse Weibull and lognormal distributions (MIWLND) as a lifetime model. First, we discuss the properties of the proposed model including the reliability and hazard functions. Next, we discuss the estimation of model parameters by using the maximum likelihood method (MLEs). We also derive expressions for the elements of the Fisher information matrix. Next, we demonstrate the usefulness of the proposed model by fitting it to a real data set. Finally, we draw some concluding remarks.


2021 ◽  
Author(s):  
Peter J. Gawthrop ◽  
Michael Pan ◽  
Edmund J. Crampin

AbstractRenewed interest in dynamic simulation models of biomolecular systems has arisen from advances in genome-wide measurement and applications of such models in biotechnology and synthetic biology. In particular, genome-scale models of cellular metabolism beyond the steady state are required in order to represent transient and dynamic regulatory properties of the system. Development of such whole-cell models requires new modelling approaches. Here we propose the energy-based bond graph methodology, which integrates stoichiometric models with thermo-dynamic principles and kinetic modelling. We demonstrate how the bond graph approach intrinsically enforces thermodynamic constraints, provides a modular approach to modelling, and gives a basis for estimation of model parameters leading to dynamic models of biomolecular systems. The approach is illustrated using a well-established stoichiometric model of E. coli and published experimental data.


Sign in / Sign up

Export Citation Format

Share Document