scholarly journals Output-Feedback Position Tracking Servo System with Feedback Gain Learning Mechanism via Order-Reduction Speed-Error-Stabilization Approach

Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 324
Author(s):  
Sung Hyun You ◽  
Seok-Kyoon Kim ◽  
Hyun Duck Choi

This paper presents a novel trajectory-tracking technique for servo systems treating only the position measurement as the output subject to practical concerns: system parameter and load uncertainties. There are two main contributions: (a) the use of observers without system parameter information for estimating the position reference derivative and speed and acceleration errors and (b) an order reduction exponential speed error stabilizer via active damping injection to enable the application of a feedback-gain-learning position-tracking action. A hardware configuration using a QUBE-servo2 and myRIO-1900 experimentally validates the closed-loop improvement under various scenarios.

1983 ◽  
Vol 105 (4) ◽  
pp. 475-479
Author(s):  
H. Van Calcar

This paper presents an acoustic position measurement system used for precise three-dimensional flowline profile measurement. The system measures several points along the flowline using the long-baseline measurement technique and augments this measurement with depth telemetry repeaters to maintain elevation accuracy throughout the changing installation geometry. The paper discusses both the measurement system and the performance enhancement features. The paper concludes with a discussion of the hardware configuration and the accuracy that can be expected when the technique is extended into deeper operating areas.


1991 ◽  
Vol 113 (3) ◽  
pp. 420-421 ◽  
Author(s):  
C. Minas ◽  
D. J. Inman

An output feedback method is developed, that systematically places a desired number of poles of a closed-loop system at or near desired locations. The system is transformed to its equivalent controllable canonical form, where the output feedback gain matrix is calculated in a weighted least squares scheme, that minimizes the change of the remaining modes of the system. The advantage of this method over other pole placement routines is the fact that the influence on the remaining unplaced modes of the system is minimum, which is particularly important in preserving closed-loop stability.


2013 ◽  
Vol 846-847 ◽  
pp. 134-138
Author(s):  
Jue Wang ◽  
Fei Li ◽  
Ye Huang ◽  
Jian Hao Wang ◽  
Hong Lin Zhang

The paper studies the problem of tracking control for flight simulator servo systems, one typical CPS, with parameter uncertainties and nonlinear friction compensation. Methods of adaptive global sliding mode control and backstepping control are respectively proposed to realize the control of virtual rotational speed and position tracking. Adaptive backstepping global sliding mode control strategy for flight simulator servo systems is proposed and its stability is analyzed. Simulation results show the effectiveness of the proposed method, which could achieve the precision position tracking performance and eliminate the chattering.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Qixin Zhu ◽  
Hongli Liu ◽  
Yiyi Yin ◽  
Lei Xiong ◽  
Yonghong Zhu

Mechanical resonance is one of the most pervasive problems in servo control. Closed-loop simulations are requisite when the servo control system with high accuracy is designed. The mathematical model of resonance mode must be considered when the closed-loop simulations of servo systems are done. There will be a big difference between the simulation results and the real actualities of servo systems when the resonance mode is not considered in simulations. Firstly, the mathematical model of resonance mode is introduced in this paper. This model can be perceived as a product of a differentiation element and an oscillating element. Secondly, the second-order differentiation element is proposed to simulate the resonant part and the oscillating element is proposed to simulate the antiresonant part. Thirdly, the simulation approach for two resonance modes in servo systems is proposed. Similarly, this approach can be extended to the simulation of three or even more resonances in servo systems. Finally, two numerical simulation examples are given.


Robotica ◽  
1989 ◽  
Vol 7 (4) ◽  
pp. 339-342
Author(s):  
Bing C. Chiou ◽  
M. Shahinpoor

SUMMARYStudies are the effects of joint flexibility on the dynamic stability of a one-link force-controlled manipulator. The closed-loop dynamic equation with the explicit force controller and the damping force controller are first derived. Stability analysis is then carried out by computing the system eigenvalues. Results indicate a conditionally stable system. Due to the presence of discontinuous contacts with the environment during the interaction process, the system exhibits a stable limit cycle when the force feedback gain goes beyond the critical value.


2020 ◽  
Vol 30 (02) ◽  
pp. 2050029
Author(s):  
Yuxia Li ◽  
Li Wang ◽  
Xia Huang

This paper investigates the exponential stabilization of delayed chaotic memristive neural networks (MNNs) via aperiodically intermittent control. The issue is proposed for two reasons: (1) The control signal may not always exist in practical applications; (2) How to enlarge the maximum allowable failure interval (MAFI) for sensors is a challenging problem. To surmount these difficulties, an index called the largest proportion of the rest width (LPRW) in the control period is proposed to measure the MAFI in the sense of guaranteeing the closed-loop system performance with the least control cost. Then, by constructing suitable Lyapunov functional in combination with interval matrix method and Halanay inequality, a stabilization criterion is established to determine the relationship between the feedback gain and the LPRW. Meanwhile, an algorithm is proposed to qualitatively analyze the relationship between the feedback gain and the LPRW. In contrast with the previous works, our results can increase the value of LPRW while still maintaining the stability of the closed-loop MNNs. Finally, some comparisons of simulation results demonstrate that the obtained stabilization criterion has some advantages over the existing ones.


1995 ◽  
Vol 117 (3) ◽  
pp. 336-342
Author(s):  
Brett Newman ◽  
David K. Schmidt

Quantitative criteria are presented for model simplification, or order reduction, such that the reduced order model may be used to synthesize and evaluate a control law, and the stability and stability robustness obtained using the reduced order model will be preserved when controlling the higher order system. The error introduced due to model simplification is treated as modeling uncertainty, and some of the results from multivariable robustness theory are brought to bear on the model simplification problem. Also, the importance of the control law itself, in meeting the modeling criteria, is underscored. A weighted balanced order reduction technique is shown to lead to results that meet the necessary criteria. The procedure is applied to an aeroelastic vehicle model, and the results are used for control law development. Critical robustness properties designed into the lower order closed-loop system are shown to be present in the higher order closed-loop system.


Sign in / Sign up

Export Citation Format

Share Document