scholarly journals Impacts of the Winter Pea Crop (Instead of Rapeseed) on Soil Microbial Communities, Nitrogen Balance and Wheat Yield

Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 548
Author(s):  
Cyrine Rezgui ◽  
Wassila Riah-Anglet ◽  
Marie Benoit ◽  
Pierre Yves Bernard ◽  
Karine Laval ◽  
...  

Due to legume-based systems improving several aspects of soil fertility, the diversification of agrosystems using legumes in crop succession is gaining increasing interest. The benefits of legumes aroused the interest of farmers in the association of the Economic and Environmental Interest Group (EEIG), who introduced the idea of using the winter pea instead of rapeseed in their crop succession. The aim of this study is to evaluate the effects of the winter pea compared to those of rapeseed, as a head crop of the rotation, on soil microbial communities, enzyme activities, nitrogen (N) balance and yields. The field experiment involved two farmer plots that were selected within the EEIG. In each plot, two crop successions, including winter pea–wheat and rapeseed–wheat with fertilized and unfertilized strips, were examined for two years. Three times a year, under the wheat crop, composite soil samples were collected at depths of 0–20 cm, for microbial abundance and enzyme activity analyses, and twice a year at a depth of 0–60 cm, for the measuring of the mineral N. The results showed that the rapeseed–wheat succession maintained or enhanced soil bacterial and fungal biomasses and their enzyme activities. The winter pea–wheat succession enriched the soil’s mineral N content more consistently than the rapeseed–wheat succession. The mineral N enhancement’s effect was maintained under the wheat crop. Overall, the impact of the winter pea was positive on the soil’s N dynamics, but wheat yields were equivalent regardless of the previous crop (winter pea or rapeseed with and without fertilization). In the Normandy region, as rapeseed requires a large amount of N fertilizer and pesticide to maintain the yield and quality of crop products, it is suitable to favor the introduction of the winter pea as the head crop of the rotation, which indirectly allows for a reduction in the costs of input production and use, the working time of farmers and environmental pollution.

2019 ◽  
Vol 364 ◽  
pp. 591-599 ◽  
Author(s):  
María T. Gómez-Sagasti ◽  
Lur Epelde ◽  
Mikel Anza ◽  
Julen Urra ◽  
Itziar Alkorta ◽  
...  

2015 ◽  
Vol 12 (13) ◽  
pp. 10359-10387 ◽  
Author(s):  
W. Y. Dong ◽  
X. Y. Zhang ◽  
X. Y. Liu ◽  
X. L. Fu ◽  
F. S. Chen ◽  
...  

Abstract. Nitrogen (N) and phosphorus (P) additions to forest ecosystems are known to influence various above-ground properties, such as plant productivity and composition, and below-ground properties, such as soil nutrient cycling. However, our understanding of how soil microbial communities and their functions respond to nutrient additions in subtropical plantations is still not complete. In this study, we added N and P to Chinese fir plantations in subtropical China to examine how nutrient additions influenced soil microbial community composition and enzyme activities. The results showed that most soil microbial properties were responsive to N and/or P additions, but responses often varied depending on the nutrient added and the quantity added. For instance, there were more than 30 % greater increases in the activities of β-Glucosidase (βG) and N-acetyl-β-D-glucosaminidase (NAG) in the treatments that received nutrient additions compared to the control plot, whereas acid phosphatase (aP) activity was always higher (57 and 71 %, respectively) in the P treatment. N and P additions greatly enhanced the PLFA abundanceespecially in the N2P treatment, the bacterial PLFAs (bacPLFAs), fungal PLFAs (funPLFAs) and actinomycic PLFAs (actPLFAs) were about 2.5, 3 and 4 times higher, respectively, than in the CK. Soil enzyme activities were noticeably higher in November than in July, mainly due to seasonal differences in soil moisture content (SMC). βG or NAG activities were significantly and positively correlated with microbial PLFAs. There were also significant relationships between gram-positive (G+) bacteria and all three soil enzymes. These findings indicate that G+ bacteria is the most important microbial community in C, N, and P transformations in Chinese fir plantations, and that βG and NAG would be useful tools for assessing the biogeochemical transformation and metabolic activity of soil microbes. We recommend combined additions of N and P fertilizer to promote soil fertility and microbial activity in this kind of plantation.


2018 ◽  
Vol 220 (3) ◽  
pp. 824-835 ◽  
Author(s):  
Manuel Delgado-Baquerizo ◽  
Fernando T. Maestre ◽  
David J. Eldridge ◽  
Matthew A. Bowker ◽  
Thomas C. Jeffries ◽  
...  

Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 680 ◽  
Author(s):  
Xuan Yu ◽  
Lin Yang ◽  
Shixuan Fei ◽  
Zitong Ma ◽  
Ruqian Hao ◽  
...  

Gaps by thinning can have different microclimatic environments compared to surrounding areas, depending on the size of the gap. In addition, gaps can play important roles in biological dynamics, nutrient cycling, and seedling regeneration. The impacts of gap size on soil microbial communities and enzyme activities in different soil layers in Chinese pine plantations are not well understood. Here, we created gaps of 45 m2 (small, G1), 100 m2 (medium, G2), and 190 m2 (large, G3) by thinning unhealthy trees in an aged (i.e., 50 years old) monoculture Chinese pine plantation in 2010. Soil samples were collected in 2015. The total, bacterial, Gram-positive (G+), and Gram-negative (G−) phospholipid fatty acid (PLFA) profiles were highest in medium gaps in both the organic and mineral layers. These indicesdecreased sharply as gap size increased to 190 m2, and each of the detected enzyme activities demonstrated the same trend. Under all the gap size managements, abundances of microbial PLFAs and enzyme activities in the organic layers were higher than in the mineral layers. The soil layer was found to have a stronger influence on soil microbial communities than gap size. Redundancy analysis (RDA) based on the three systems with different gap sizes showed that undergrowth coverage, diversity, soil total nitrogen (TN), total organic carbon (TOC), and available phosphorus (AT) significantly affected soil microbial communities. Our findings highlighted that the effect of gap size on soil microenvironment is valuable information for assessing soil fertility. Medium gaps (i.e., 100 m2) have higher microbial PLFAs, enzyme activity, and soil nutrient availability. These medium gaps are considered favorable for soil microbial communities and fertility studied in a Chinese pine plantation managed on the Loess Plateau.


Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 355
Author(s):  
Ana Barreiro ◽  
Alba Lombao ◽  
Angela Martín ◽  
Javier Cancelo-González ◽  
Tarsy Carballas ◽  
...  

Soil properties determining the thermal transmissivity, the heat duration and temperatures reached during soil heating are key factors driving the fire-induced changes in soil microbial communities. The aim of the present study is to analyze, under laboratory conditions, the impact of the thermal shock (infrared lamps reaching temperatures of 100 °C, 200 °C and 400 °C) and moisture level (0%, 25% and 50% per soil volume) on the microbial properties of three soil mixtures from different sites. The results demonstrated that the initial water content was a determinant factor in the response of the microbial communities to soil heating treatments. Measures of fire impact included intensity and severity (temperature, duration), using the degree-hours method. Heating temperatures produced varying thermal shock and impacts on biomass, bacterial activity and microbial community structure.


Chemosphere ◽  
2016 ◽  
Vol 142 ◽  
pp. 145-152 ◽  
Author(s):  
Khalid A. Elzobair ◽  
Mary E. Stromberger ◽  
James A. Ippolito ◽  
Rodrick D. Lentz

2018 ◽  
Vol 15 (4) ◽  
pp. 1217-1228 ◽  
Author(s):  
Zhiwei Xu ◽  
Guirui Yu ◽  
Xinyu Zhang ◽  
Nianpeng He ◽  
Qiufeng Wang ◽  
...  

Abstract. Soil microorganisms play an important role in regulating nutrient cycling in terrestrial ecosystems. Most of the studies conducted thus far have been confined to a single forest biome or have focused on one or two controlling factors, and few have dealt with the integrated effects of climate, vegetation, and soil substrate availability on soil microbial communities and functions among different forests. In this study, we used phospholipid-derived fatty acid (PLFA) analysis to investigate soil microbial community structure and extracellular enzymatic activities to evaluate the functional potential of soil microbes of different types of forests in three different climatic zones along the north–south transect in eastern China (NSTEC). Both climate and forest type had significant effects on soil enzyme activities and microbial communities with considerable interactive effects. Except for soil acid phosphatase (AP), the other three enzyme activities were much higher in the warm temperate zone than in the temperate and the subtropical climate zones. The soil total PLFAs and bacteria were much higher in the temperate zone than in the warm temperate and the subtropical zones. The soil β-glucosidase (BG) and N-acetylglucosaminidase (NAG) activities were highest in the coniferous forest. Except for the soil fungi and fungi–bacteria (F/B), the different groups of microbial PLFAs were much higher in the conifer broad-leaved mixed forests than in the coniferous forests and the broad-leaved forests. In general, soil enzyme activities and microbial PLFAs were higher in primary forests than in secondary forests in temperate and warm temperate regions. In the subtropical region, soil enzyme activities were lower in the primary forests than in the secondary forests and microbial PLFAs did not differ significantly between primary and secondary forests. Different compositions of the tree species may cause variations in soil microbial communities and enzyme activities. Our results showed that the main controls on soil microbes and functions vary in different climatic zones and that the effects of soil moisture content, soil temperature, clay content, and the soil N ∕ P ratio were considerable. This information will add value to the modeling of microbial processes and will contribute to carbon cycling in large-scale carbon models.


2021 ◽  
Author(s):  
Alessandro Cestaro ◽  
emanuela coller ◽  
Davide Albanese ◽  
erika stefani ◽  
Massimo Pindo ◽  
...  

Agricultural soils harbor rich and diverse microbial communities that have a deep influence on soil properties and productivity. Large scale studies have shown the impact of environmental parameters like climate or chemical composition on the distribution of bacterial and fungal species. Comparatively, little data exists documenting how soil microbial communities change between different years. Quantifying the temporal stability of soil microbial communities will allow us to better understand the relevance of the differences between environments and their impact on ecological processes on the global and local scale. We characterized the bacterial and fungal components of the soil microbiota in ten vineyards in two consecutive years. Despite differences of species richness and diversity between the two years, we found a general stability of the taxonomic structure of the soil microbiota. Temporal differences were smaller than differences due to geographical location, vineyard land management or differences between sampling sites within the same vineyard. Using machine learning, we demonstrated that each site was characterized by a distinctive microbiota, and we identified a reduced set of indicator species that could classify samples according to their geographic origin across different years with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document