scholarly journals Temperature Effects on Properties of Rice Husk Biochar and Calcinated Burkina Phosphate Rock

Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 432
Author(s):  
Vincent K. Avornyo ◽  
Andrew Manu ◽  
David A. Laird ◽  
Michael L. Thompson

Rice husk biochar (RHB) and phosphate rock (PR) are locally accessible resources that poor farmers in Sub-Saharan Africa (SSA) can utilize to increase rice productivity. However, biochars are variable depending on feedstock, pyrolysis temperature, and duration. Phosphate rocks from SSA are of low solubility. The goal of this study was to determine whether pyrolysis of rice husk (RH), calcination of PR, and the calcination/pyrolysis of a RHB-PR mixture at 300 °C, 500 °C, and 700 °C can increase formic acid (FA)- extractable phosphorous (P). The properties of these RHBs were compared to the properties of RHB produced through a simple farmer-friendly pyrolysis technique termed “Kun-tan”. Properties of calcinated PR were also compared to the raw PR. Quartz formed from amorphous SiO2 during RH pyrolysis and was the dominant mineral phase in the biochars, irrespective of the pyrolysis temperature. Formic acid-extractable P content, pH, and ash content of the biochars increased with increasing pyrolysis temperature. At 700 °C, FA-extractable P content of the RHB was 219% more than the feedstock. Hydroxyapatite and quartz were the dominant minerals in the PR irrespective of calcination temperature, indicating that hydroxyapatite and quartz were stable to at least 700 °C. Rather, calcination decreased the FA-extractable P content of the PR.

2020 ◽  
Author(s):  
Kwame Agyei Frimpong ◽  
Emmanuel Abban-Baidoo ◽  
Bernd Marschner

AbstractSoil fertility decline represents a major constraint to crop productivity in sub-Saharan Africa. Many studies have shown that addition of biochar or compost can effectively improve soil quality. Biochar produced from crop residues are often N-poor but rich in stable C while poultry manure composts, which is often rich in nutrients including N decomposes rapidly under high rainfall and temperature conditions. Combined biochar and compost application can compensate for the shortcomings of each other such that their interactive effect is likely to improve soil quality. A 30-days incubation experiment was carried out on a Haplic acrisol amended with corn cob biochar, rice husk biochar, coconut husk biochar, poultry manure compost and composted rice husk or corn cob biochar to examine the effect of compost and biochar, applied singly, in combination or as co-compost on basal soil respiration, and soil quality indicators such as soil pH; soil microbial carbon; cation exchange capacity; total organic carbon, total nitrogen and available nitrogen concentration. The results showed that addition of the different amendments increased soil pH compared with the untreated control with the combined corn cob and rice biochar and compost treatments recording the highest pH values. Basal respiration following sole compost, composted biochar and combined biochar and compost application were significantly greater than the sole biochar and the control treatments. TOC increased by 37% in the sole compost treatment to 117.3% in the combined corn cob biochar and compost treatment, respectively. MBC increased by 132.2% in the combined rice husk biochar and compost treatment and by 247% in the sole compost treatment compared to the control. The study has demonstrated the potential of compost, biochar and especially composted biochar to enhance soil quality, C stabilization and reduce soil C loss through basal respiration.


2021 ◽  
Author(s):  
Bernice Mawumenyo Senanu ◽  
Patrick Boakye ◽  
Sampson Oduro-Kwarteng ◽  
Divine Damertey Sewu ◽  
Esi Awuah ◽  
...  

Abstract On-site dry sanitation facilities, although cheaper than wet sanitation systems, suffer from high malodour and insect nuisance as well as poor aesthetics. The high odour deters users from utilizing dry sanitation toilet as an improved facility leading to over 20% open defecation in Sub-Saharan Africa. To address this malodour concern, this study first assessed odour levels, using hydrogen sulphide (H2S) and ammonia (NH3) as indicators, on two (2) dry sanitation facilities (T1 and T2). The potential of using biomass (sawdust, rice husk, moringa leaves, neem seeds), ash (coconut husk, cocoa husk) or biochar (sawdust, rice husk, bamboo) as biocovers to remove or suppress odour from fresh faecal sludge (FS) over a 12-day period was investigated. Results showed high odour levels, beyond and below the threshold limit for unpleasantness for humans on H2S (peak value: T1 = 3.17 ppm; T2 = 0.22 ppm > 0.05 ppm limit) and NH3 (peak value: T1 = 6.88 ppm; T2 = 3.16 ppm < 30 ppm limit), respectively. The biomasses exhibited low pH (acidic = 5-7) whereas the biochars and ashes had higher pHs (basic = 8-13). Acidic biocovers generally reduced NH3 emission significantly (12.5% to 64.8%) whereas basic biocovers were more effective at H2S emission reduction (80.9% to 96.2%). In terms of H2S and NH3 removal, sawdust biochar was the most effective biocover with odour abatement values of 96.2% and 74.7%, respectively. The results suggest that locally available waste plant-based materials, like sawdust, when converted to biochar can serve as a cost-effective and sustainable way to effectively combat odour-related issues associated with dry sanitation facilities to help stop open defecation.


2020 ◽  
Vol 7 (1) ◽  
pp. 39
Author(s):  
Kurnia Dewi Sasmita ◽  
Iswandi Anas ◽  
Syaiful Anwar ◽  
Sudirman Yahya ◽  
Gunawan Djajakirana

<em>The growth of cacao in acid soils is commonly limited by some problems such as low available P and pH, and high Al saturation. Therefore, research is needed to solve the problem of coffee cultivation in acid soil. This study aimed to determine the effect of ameliorant, phosphate solubilizing microbes (PSM), and phosphate fertilizers (P) on the growth and nutrient uptake of cacao seedlings, and some acid soil properties. The study used a randomized block design with 3 factors and 3 replications. The first factor was ameliorant applications (without ameliorant, 10% organic fertilizer, 4% rice husk biochar, 4% rice husk biochar + 10% organic fertilizer). The second factor was PSM applications: without PSM, Burkholderia ambifaria (BPF) inoculants, and Aspergillus niger (FPF) inoculants. The third factor was P fertilizers applications (without Phosphate Rock (PR), 100, 200, and 400 mg P/kg of PR, and 400 mg P/kg of SP-36). The results showed that the applications of 4% rice husk biochar + 10% organic fertilizer + BPF or FPF inoculants increase the number of leaves by 77.9% and 69.2%, respectively, and increase the dry weight of shoot by 93.6 % and 101.9%, respectively. Phosphate rock application in media without organic fertilizer increases dry weight of shoots and roots of cacao seedlings, and the uptake of P, Ca, and Mg in shoots linearly in line with the increase of PR dose to 400 mg P/kg. Application of rice husk biochar significantly increased the acid phosphatase activity of growing media. Meanwhile, organic fertilizer increased the soil pH, acid phosphatase and available P activity, and decreased Al-dd growing media.</em>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bernice Mawumenyo Senanu ◽  
Patrick Boakye ◽  
Sampson Oduro-Kwarteng ◽  
Divine Damertey Sewu ◽  
Esi Awuah ◽  
...  

AbstractOn-site dry sanitation facilities, although cheaper than wet sanitation systems, suffer from high malodour and insect nuisance as well as poor aesthetics. The high odour deters users from utilizing dry sanitation toilets as an improved facility leading to over 20% open defecation in Sub-Saharan Africa. To address this malodour concern, this study first assessed odour levels, using hydrogen sulphide (H2S) and ammonia (NH3) as indicators, on two dry sanitation facilities named T1 and T2. The potential of using biomass (sawdust, rice husk, moringa leaves, neem seeds), ash (coconut husk, cocoa husk) or biochar (sawdust, rice husk, bamboo) as biocovers to remove or suppress odour from fresh faecal sludge (FS) over a 12-day period was investigated. Results showed that the odour levels for H2S in both T1 (3.17 ppm) and T2 (0.22 ppm) were above the threshold limit of 0.05 ppm, for unpleasantness in humans and vice versa for NH3 odour levels (T1 = 6.88 ppm; T2 = 3.16 ppm; threshold limit = 30 ppm limit). The biomasses exhibited low pH (acidic = 5–7) whereas the biochars and ashes had higher pHs (basic = 8–13). Basic biocovers were more effective at H2S emission reduction (80.9% to 96.2%) than acidic biocovers. The effect of pH on suppression of NH3 was determined to be statistically insignificant at 95% confidence limit. In terms of H2S and NH3 removal, sawdust biochar was the most effective biocover with odour abatement values of 96.2% and 74.7%, respectively. The results suggest that biochar produced from locally available waste plant-based materials, like sawdust, can serve as a cost-effective and sustainable way to effectively combat odour-related issues associated with dry sanitation facilities to help stop open defecation.


2020 ◽  
Vol 738 ◽  
pp. 139910 ◽  
Author(s):  
Qingfa Zhang ◽  
Donghong Zhang ◽  
Wenyu Lu ◽  
Muhammad Usman Khan ◽  
Hang Xu ◽  
...  

2022 ◽  
Author(s):  
Adama Sagnon ◽  
Shinya Iwasaki ◽  
Ezechiel Bionimian Tibiri ◽  
Nongma Armel Zongo ◽  
Emmanuel Compaore ◽  
...  

Abstract Purpose The low availability of phosphorus (P) severely limits crop production in sub-Saharan Africa. We evaluated phosphate rock-enriched composts on soil properties and sorghum growth for use as environment-friendly fertilizers. Methods Treatments were sorghum straw, compost (Comp), Phosphate Rock (BPR), BPR-enriched compost (P-Comp), BPR-soil-enriched compost (P-Comp-Soil), nitrogen-phosphorus-potassium (NPK, 60-90-30), and control without phosphorus and organic material (CT). Sorgum straw and composts were applied at 1.34 tons ha-1. The amounts of nitrogen, phosphorus, and potassium in treatments, except in CT, were adjusted to 60, 90, 30 kg ha-1, with urea, BPR, and KCl, respectively. Sorghum vr. Kapelga was cultivated and soil samples were collected on days 52, 93, and 115 (harvest) for analysis. Results NPK and P-Comp-Soil provided the best sorghum yields. Soil available P was less in these treatments. P-Comp-Soil-amended soils recorded higher populations of bacteria (16S rRNA), acid phosphatase (aphA), phosphonatase (phnX), glucose dehydrogenase (gcd) and its cofactor pyrroloquinoline quinone (pqqE) genes. Phosphate-specific transporter (pstS) and arbuscular mycorrhizal fungi (AMF) abundances were generally higher in P-Comp-Soil soils, especially at the early growth stage. This active microbial activity in the P-Comp-Soil added to its initially higher available P justified a better nutrient uptake and yields comparable to NPK. Multivariate analysis also revealed the contribution of nitrogen, carbon, and exchangeable cations in sorghum growth. Conclusion This study demonstrated that direct phosphate rock application is not effective in sub-Saharan African upland cultivation. Alternative to chemical fertilizers, soils may be amended with phosphate rock-enriched composts, a niche of beneficial microbes improving soil health.


1997 ◽  
Vol 37 (8) ◽  
pp. 937 ◽  
Author(s):  
R. J. Gilkes ◽  
M. D. A. Bolland

Summary. The chemical reactivity of apatite phosphate rock (PR) from Sechura (Bayovar), North Carolina, Egypt (Hamrawein), Morocco (Khouribja) and Queensland (Duchess), was estimated using the following methods (indices): percentage of the phosphorus (P) present in the PR that is soluble in one extraction with 2% citric acid and 2% formic acid, and variation in crystal chemistry determined using X-ray diffraction to measure the length of the unit cell a dimension. The indices were related to the agronomic effectiveness of the PRs for pasture using percentage of the maximum (relative) yields for PR and superphosphate. At most sites there was a statistically significant trend for the agronomic effectiveness of the PRs to increase with increasing reactivity of the PRs as assessed by the 3 indices. However, this was not the case for sites where: (i) leaching of water-soluble P from freshly-applied superphosphate occurs in wet years; and (ii) the agronomic effectiveness using SV 50 values of all the PRs was uniformly low so that no differences between the PRs could be detected. The relationship between the agronomic effectiveness (SV50) of PR and chemical reactivity of the PR were generally different each year and in most cases this variability was related to the variation in total annual rainfall. From this study it is concluded that PRs in which greater than 65–70% of their total P content is soluble in 2% formic acid are likely to be highly reactive and therefore agronomically effective P fertilisers for direct application to appropriate soils in suitable environments.


2017 ◽  
Vol 1 (6) ◽  
pp. 533-537
Author(s):  
Lorenz von Seidlein ◽  
Borimas Hanboonkunupakarn ◽  
Podjanee Jittmala ◽  
Sasithon Pukrittayakamee

RTS,S/AS01 is the most advanced vaccine to prevent malaria. It is safe and moderately effective. A large pivotal phase III trial in over 15 000 young children in sub-Saharan Africa completed in 2014 showed that the vaccine could protect around one-third of children (aged 5–17 months) and one-fourth of infants (aged 6–12 weeks) from uncomplicated falciparum malaria. The European Medicines Agency approved licensing and programmatic roll-out of the RTSS vaccine in malaria endemic countries in sub-Saharan Africa. WHO is planning further studies in a large Malaria Vaccine Implementation Programme, in more than 400 000 young African children. With the changing malaria epidemiology in Africa resulting in older children at risk, alternative modes of employment are under evaluation, for example the use of RTS,S/AS01 in older children as part of seasonal malaria prophylaxis. Another strategy is combining mass drug administrations with mass vaccine campaigns for all age groups in regional malaria elimination campaigns. A phase II trial is ongoing to evaluate the safety and immunogenicity of the RTSS in combination with antimalarial drugs in Thailand. Such novel approaches aim to extract the maximum benefit from the well-documented, short-lasting protective efficacy of RTS,S/AS01.


Sign in / Sign up

Export Citation Format

Share Document