scholarly journals Near-Infrared Spectroscopy (NIRS) and Optical Sensors for Estimating Protein and Fiber in Dryland Mediterranean Pastures

2021 ◽  
Vol 3 (1) ◽  
pp. 73-91
Author(s):  
João Serrano ◽  
Shakib Shahidian ◽  
Ângelo Carapau ◽  
Ana Elisa Rato

Dryland pastures provide the basis for animal sustenance in extensive production systems in Iberian Peninsula. These systems have temporal and spatial variability of pasture quality resulting from the diversity of soil fertility and pasture floristic composition, the interaction with trees, animal grazing, and a Mediterranean climate characterized by accentuated seasonality and interannual irregularity. Grazing management decisions are dependent on assessing pasture availability and quality. Conventional analytical determination of crude protein (CP) and fiber (neutral detergent fiber, NDF) by reference laboratory methods require laborious and expensive procedures and, thus, do not meet the needs of the current animal production systems. The aim of this study was to evaluate two alternative approaches to estimate pasture CP and NDF, namely one based on near-infrared spectroscopy (NIRS) combined with multivariate data analysis and the other based on the Normalized Difference Vegetation Index (NDVI) measured in the field by a proximal active optical sensor (AOS). A total of 232 pasture samples were collected from January to June 2020 in eight fields. Of these, 96 samples were processed in fresh form using NIRS. All 232 samples were dried and subjected to reference laboratory and NIRS analysis. For NIRS, fresh and dry samples were split in two sets: a calibration set with half of the samples and an external validation set with the remaining half of the samples. The results of this study showed significant correlation between NIRS calibration models and reference methods for quantifying pasture quality parameters, with greater accuracy in dry samples (R2 = 0.936 and RPD = 4.01 for CP and R2 = 0.914 and RPD = 3.48 for NDF) than fresh samples (R2 = 0.702 and RPD = 1.88 for CP and R2 = 0.720 and RPD = 2.38 for NDF). The NDVI measured by the AOS shows a similar coefficient of determination to the NIRS approach with pasture fresh samples (R2 = 0.707 for CP and R2 = 0.648 for NDF). The results demonstrate the potential of these technologies for estimating CP and NDF in pastures, which can facilitate the farm manager’s decision making in terms of the dynamic management of animal grazing and supplementation needs.

2020 ◽  
Vol 10 (13) ◽  
pp. 4463
Author(s):  
João Serrano ◽  
Shakib Shahidian ◽  
José Marques da Silva ◽  
Luís Paixão ◽  
Emanuel Carreira ◽  
...  

Pasture quality monitoring is a key element in the decision making process of a farm manager. Laboratory reference methods for assessing quality parameters such as crude protein (CP) or fibers (neutral detergent fiber: NDF) require collection and analytical procedures involving technicians, time, and reagents, making them laborious and expensive. The objective of this work was to evaluate two technological and expeditious approaches for estimating and monitoring the evolution of the quality parameters in biodiverse Mediterranean pastures: (i) near infrared spectroscopy (NIRS) combined with multivariate data analysis and (ii) remote sensing (RS) based on Sentinel-2 imagery to calculate the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI). Between February 2018 and March 2019, 21 sampling processes were carried out in nine fields, totaling 398 pasture samples, of which 315 were used during the calibration phase and 83 were used during the validation phase of the NIRS approach. The average reference values of pasture moisture content (PMC), CP, and NDF, obtained in 24 tests carried out between January and May 2019 in eight fields, were used to evaluate the RS accuracy. The results of this study showed significant correlation between NIRS calibration models or spectral indices obtained by remote sensing (NDVIRS and NDWIRS) and reference methods for quantifying pasture quality parameters, both of which open up good prospects for technological-based service providers to develop applications that enable the dynamic management of animal grazing.


2021 ◽  
Vol 13 (5) ◽  
pp. 2734
Author(s):  
João Serrano ◽  
Shakib Shahidian ◽  
José Marques da Silva ◽  
Luís Paixão ◽  
Mário de Carvalho ◽  
...  

The Montado is an agro-silvo-pastoral ecosystem characteristic of the Mediterranean region. Pasture productivity and, consequently, the possibilities for intensifying livestock production depend on soil fertility. Soil organic matter (SOM) and phosphorus (P2O5) are two indicators of the evolution of soil fertility in this ecosystem. However, their conventional analytical determination by reference laboratory methods is costly, time consuming, and laborious and, thus, does not meet the needs of current production systems. The aim of this study was to evaluate an alternative approach to estimate SOM and soil P2O5 based on near infrared spectroscopy (NIRS) combined with multivariate data analysis. For this purpose, 242 topsoil samples were collected in 2019 in eleven fields. These samples were subjected to reference laboratory analysis and NIRS analysis. For NIRS, 165 samples were used during the calibration phase and 77 samples were used during the external validation phase. The results of this study showed significant correlation between NIRS calibration models and reference methods for quantification of these soil parameters. The coefficient of determination (R2, 0.85 for SOM and 0.76 for P2O5) and the residual predictive deviation (RPD, 2.7 for SOM and 2.2 for P2O5) obtained in external validation indicated the potential of NIRS to estimate SOM and P2O5, which can facilitate farm managers’ decision making in terms of dynamic management of animal grazing and differential fertilizer application.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xuyang Pan ◽  
Laijun Sun ◽  
Guobing Sun ◽  
Panxiang Rong ◽  
Yuncai Lu ◽  
...  

AbstractNeutral detergent fiber (NDF) content was the critical indicator of fiber in corn stover. This study aimed to develop a prediction model to precisely measure NDF content in corn stover using near-infrared spectroscopy (NIRS) technique. Here, spectral data ranging from 400 to 2500 nm were obtained by scanning 530 samples, and Monte Carlo Cross Validation and the pretreatment were used to preprocess the original spectra. Moreover, the interval partial least square (iPLS) was employed to extract feature wavebands to reduce data computation. The PLSR model was built using two spectral regions, and it was evaluated with the coefficient of determination (R2) and root mean square error of cross validation (RMSECV) obtaining 0.97 and 0.65%, respectively. The overall results proved that the developed prediction model coupled with spectral data analysis provides a set of theoretical foundations for NIRS techniques application on measuring fiber content in corn stover.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 666
Author(s):  
Rafael Font ◽  
Mercedes del Río-Celestino ◽  
Diego Luna ◽  
Juan Gil ◽  
Antonio de Haro-Bailón

The near-infrared spectroscopy (NIRS) combined with modified partial least squares (modified PLS) regression was used for determining the neutral detergent fiber (NDF) and the acid detergent fiber (ADF) fractions of the chickpea (Cicer arietinum L.) seed. Fifty chickpea accessions (24 desi and 26 kabuli types) and fifty recombinant inbred lines F5:6 derived from a kabuli × desi cross were evaluated for NDF and ADF, and scanned by NIRS. NDF and ADF values were regressed against different spectral transformations by modified partial least squares regression. The coefficients of determination in the cross-validation and the standard deviation from the standard error of cross-validation ratio were, for NDF, 0.91 and 3.37, and for ADF, 0.98 and 6.73, respectively, showing the high potential of NIRS to assess these components in chickpea for screening (NDF) or quality control (ADF) purposes. The spectral information provided by different chromophores existing in the chickpea seed highly correlated with the NDF and ADF composition of the seed, and, thus, those electronic transitions are highly influenced on model fitting for fiber.


2016 ◽  
Vol 56 (9) ◽  
pp. 1504 ◽  
Author(s):  
J. P. Keim ◽  
H. Charles ◽  
D. Alomar

An important constraint of in situ degradability studies is the need to analyse a high number of samples and often with insufficient amount of residue, especially after the longer incubations of high-quality forages, that impede the study of more than one nutritional component. Near-infrared spectroscopy (NIRS) has been established as a reliable method for predicting composition of many entities, including forages and other animal feedstuffs. The objective of this work was to evaluate the potential of NIRS for predicting the crude protein (CP) and neutral detergent fibre (NDF) concentration in rumen incubation residues of permanent and sown temperate pastures in a vegetative stage. In situ residues (n = 236) from four swards were scanned for their visible-NIR spectra and analysed for CP and NDF. Selected equations developed by partial least-squares multivariate regression presented high coefficients of determination (CP = 0.99, NDF = 0.95) and low standard errors (CP = 4.17 g/kg, NDF = 7.91 g/kg) in cross-validation. These errors compare favourably to the average concentrations of CP and NDF (146.5 and 711.2 g/kg, respectively) and represent a low fraction of their standard deviation (CP = 38.2 g/kg, NDF = 34.4 g/kg). An external validation was not as successful, with R2 of 0.83 and 0.82 and a standard error of prediction of 14.8 and 15.2 g/kg, for CP and NDF, respectively. It is concluded that NIRS has the potential to predict CP and NDF of in situ incubation residues of leafy pastures typical of humid temperate zones, but more robust calibrations should be developed.


2012 ◽  
Vol 482-484 ◽  
pp. 1515-1519
Author(s):  
Zhi Guo Zhang ◽  
Hong Zhang Chen

Recently, some solid state fermentation (SSF) processes of xanthan production were studied. However, quantitative analysis of the concentration of xanthan and biomass is more complicated than that of submerged fermentation. To facilitate the analysis of these components, near–infrared spectroscopy (NIRS) was used. A NIRS calibration models for rapidly estimating xanthan and biomass concentration in xanthan fermentation on inert support of polyurethane foam was established. The wavenumber and spectral pretreatment method were optimized. The data of cross validation and external validation shows that NIRS was suitable for rapid and accurate quantification of the concentration of xanthan and biomass in solid state fermentation on inert support. This method will provide much convenience for the research of solid state fermentation on inert support.


2017 ◽  
Vol 25 (5) ◽  
pp. 324-329 ◽  
Author(s):  
Li Dan ◽  
Wu Yi-Hui

The aim of this research was to investigate the feasibility of Fourier transform near infrared spectroscopy combined with chemometric analysis to develop a rapid method for identification of different resin types which had been deemed similar by a preliminary visual examination. Principal component analysis was applied on spectral data to classify two types of epoxy resin samples and three types of phenolic resin samples. In this case, a total of two hundred and fifteen samples were used for the evaluation and validation of two types of epoxy resin samples (SY1342 and SY1346) and three types of phenolic resin samples (Y3567, Y2705 and Y2137). All were correctly differentiated by their respective models. Moreover, in the external validation, the prediction rate of samples correctly classified was also 100%. Such classifications are very important for the detection of adulterated samples and for quality control. Near infrared spectroscopy was shown to be a very reliable, accurate and useful tool to classify resin samples in a fast, clean and inexpensive way compared to classical analysis, and it will enable copper clad laminate manufacturers to detect and take early corrective actions that will ultimately save time and money while establishing a uniform quality.


2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Li-Dunn Chen ◽  
Mariana Santos-Rivera ◽  
Isabella J. Burger ◽  
Andrew J. Kouba ◽  
Diane M. Barber ◽  
...  

Biological sex is one of the more critically important physiological parameters needed for managing threatened animal species because it is crucial for informing several of the management decisions surrounding conservation breeding programs. Near-infrared spectroscopy (NIRS) is a non-invasive technology that has been recently applied in the field of wildlife science to evaluate various aspects of animal physiology and may have potential as an in vivo technique for determining biological sex in live amphibian species. This study investigated whether NIRS could be used as a rapid and non-invasive method for discriminating biological sex in the endangered Houston toad (Anaxyrus houstonensis). NIR spectra (N = 396) were collected from live A. houstonensis individuals (N = 132), and distinct spectral patterns between males and females were identified using chemometrics. Linear discriminant analysis (PCA-LDA) classified the spectra from each biological sex with accuracy ≥ 98% in the calibration and internal validation datasets and 94% in the external validation process. Through the use of NIRS, we have determined that unique spectral signatures can be holistically captured in the skin of male and female anurans, bringing to light the possibility of further application of this technique for juveniles and sexually monomorphic species, whose sex designation is important for breeding-related decisions.


2017 ◽  
Vol 26 (1) ◽  
pp. 44-52 ◽  
Author(s):  
C Ariza-Nieto ◽  
OL Mayorga ◽  
B Mojica ◽  
D Parra ◽  
G Afanador-Tellez

This study used a total of 2020 Colombian forage resources of three families (Grass forages, legume forages, and other forage plants) to develop near infrared spectroscopy calibrations for predicting the nutritional value. Spectra were collected at 2 nm increments using a scanning visible/near infrared spectrometer. The reference data used for each forage were crude protein, crude ash, neutral detergent fiber, acid detergent fiber, acid detergent lignin, measured according to the Association of Official Analytical Chemists. Two chemometric tools for developing near infrared spectroscopy prediction models were compared: the GLOBAL modified partial least squares, and the calibration strategy known as LOCAL. The LOCAL procedure is designed to select, from a large database, samples with spectra resembling the sample being analyzed. Selected samples were used as calibration sets after one-tenth of the samples were selected for validation from each database. Predictions of nutrition indicators in validation samples using generic and specific calibrations were compared with both GLOBAL and LOCAL procedures. For all predicted forages, LOCAL resulted in a significant improvement in both standard error of prediction and bias values compared with GLOBAL. Determination coefficient values (r2) also improved using the LOCAL algorithm, exceeding 0.9 for most forage sets. LOCAL calibration was then used with only one database (n 2020) comprising all the forage samples and SEP and r2 were similar to those obtained in the three databases using LOCAL algorithm. Therefore, LOCAL can accurately predict the composition of different forages using only one database, and could offer a practical way to develop robust equations taking into account the biodiversity of Colombian forages.


Sign in / Sign up

Export Citation Format

Share Document