scholarly journals Divergent Genomic Selection for Herbage Accumulation and Days-To-Heading in Perennial Ryegrass

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 340
Author(s):  
Marty Faville ◽  
Mingshu Cao ◽  
Jana Schmidt ◽  
Douglas Ryan ◽  
Siva Ganesh ◽  
...  

Increasing the rate of genetic gain for dry matter (DM) yield in perennial ryegrass (Lolium perenne L.), which is a key source of nutrition for ruminants in temperate environments, is an important goal for breeders. Genomic selection (GS) is a strategy used to improve genetic gain by using molecular marker information to predict breeding values in selection candidates. An empirical assessment of GS for herbage accumulation (HA; proxy for DM yield) and days-to-heading (DTH) was completed by using existing genomic prediction models to conduct one cycle of divergent GS in four selection populations (Pop I G1 and G3; Pop III G1 and G3), for each trait. G1 populations were the offspring of the training set and G3 populations were two generations further on from that. The HA of the High GEBV selection group (SG) progenies, averaged across all four populations, was 28% higher (p < 0.05) than Low GEBV SGs when assessed in the target environment, while it did not differ significantly in a second environment. Divergence was greater in Pop I (43%–65%) than Pop III (10%–16%) and the selection response was higher in G1 than in G3. Divergent GS for DTH also produced significant (p < 0.05) differences between High and Low GEBV SGs in G1 populations (+6.3 to 9.1 days; 31%–61%) and smaller, non-significant (p > 0.05) responses in G3. This study shows that genomic prediction models, trained from a small, composite reference set, can be used to improve traits with contrasting genetic architectures in perennial ryegrass. The results highlight the importance of target environment selection for training models, as well as the influence of relatedness between the training set and selection populations.

2019 ◽  
Author(s):  
Sai Krishna Arojju ◽  
Mingshu Cao ◽  
M. Z. Zulfi Jahufer ◽  
Brent A Barrett ◽  
Marty J Faville

AbstractForage nutritive value impacts animal nutrition, which underpins livestock productivity, reproduction and health. Genetic improvement for nutritive traits has been limited, as they are typically expensive and time-consuming to measure through conventional methods. Genomic selection is appropriate for such complex and expensive traits, enabling cost-effective prediction of breeding values using genome-wide markers. The aims of the present study were to assess the potential of genomic selection for a range of nutritive traits in a multi-population training set, and to quantify contributions of genotypic, environmental and genotype-by-environment (G × E) variance components to trait variation and heritability for nutritive traits. The training set consisted of a total of 517 half-sibling (half-sib) families, from five advanced breeding populations, evaluated in two distinct New Zealand grazing environments. Autumn-harvested samples were analyzed for 18 nutritive traits and maternal parents of the half-sib families were genotyped using genotyping-by-sequencing. Significant (P<0.05) genotypic variation was detected for all nutritive traits and genomic heritability (h2g) was moderate to high (0.20 to 0.74). G × E interactions were significant and particularly large for water soluble carbohydrate (WSC), crude fat, phosphorus (P) and crude protein. GBLUP, KGD-GBLUP and BayesC genomic prediction models displayed similar predictive ability, estimated by 10-fold cross validation, for all nutritive traits with values ranging from r = 0.16 to 0.45 using phenotypes from across two environments. High predictive ability was observed for the mineral traits sulphur (0.44), sodium (0.45) and magnesium (0.45) and the lowest values were observed for P (0.16), digestibility (0.22) and high molecular weight WSC (0.23). Predictive ability estimates for most nutritive traits were retained when marker number was reduced from 1 million to as few as 50,000. The moderate to high predictive abilities observed suggests implementation of genomic selection is feasible for most of the nutritive traits examined. For traits with lower predictive ability, multi-trait genomic prediction approaches that exploit the strong genetic correlations observed amongst some nutritive traits may be useful. This appears to be particularly important for WSC, considered one of the primary constituent of nutritive value for forages.


2018 ◽  
Author(s):  
Stefan McKinnon Edwards ◽  
Jaap B. Buntjer ◽  
Robert Jackson ◽  
Alison R. Bentley ◽  
Jacob Lage ◽  
...  

AbstractGenomic selection offers several routes for increasing genetic gain or efficiency of plant breeding programs. In various species of livestock there is empirical evidence of increased rates of genetic gain from the use of genomic selection to target different aspects of the breeder’s equation. Accurate predictions of genomic breeding value are central to this and the design of training sets is in turn central to achieving sufficient levels of accuracy. In summary, small numbers of close relatives and very large numbers of distant relatives are expected to enable accurate predictions.To quantify the effect of some of the properties of training sets on the accuracy of genomic selection in crops we performed an extensive field-based winter wheat trial. In summary, this trial involved the construction of 44 F2:4 bi- and triparental populations, from which 2992 lines were grown on four field locations and yield was measured. For each line, genotype data were generated for 25,000 segregating single nucleotide polymorphism markers. The overall heritability of yield was estimated to 0.65, and estimates within individual families ranged between 0.10 and 0.85. Within cross genomic prediction accuracies of yield BLUEs were 0.125 – 0.127 using two different cross-validation approaches, and generally increased with training set size. Using related crosses in training and validation sets generally resulted in higher prediction accuracies than using unrelated crosses. The results of this study emphasize the importance of the training set design in relation to the genetic material to which the resulting prediction model is to be applied.


2019 ◽  
Vol 10 (2) ◽  
pp. 695-708 ◽  
Author(s):  
Sai Krishna Arojju ◽  
Mingshu Cao ◽  
M. Z. Zulfi Jahufer ◽  
Brent A. Barrett ◽  
Marty J. Faville

Forage nutritive value impacts animal nutrition, which underpins livestock productivity, reproduction and health. Genetic improvement for nutritive traits in perennial ryegrass has been limited, as they are typically expensive and time-consuming to measure through conventional methods. Genomic selection is appropriate for such complex and expensive traits, enabling cost-effective prediction of breeding values using genome-wide markers. The aims of the present study were to assess the potential of genomic selection for a range of nutritive traits in a multi-population training set, and to quantify contributions of family, location and family-by-location variance components to trait variation and heritability for nutritive traits. The training set consisted of a total of 517 half-sibling (half-sib) families, from five advanced breeding populations, evaluated in two distinct New Zealand grazing environments. Autumn-harvested samples were analyzed for 18 nutritive traits and maternal parents of the half-sib families were genotyped using genotyping-by-sequencing. Significant (P < 0.05) family variance was detected for all nutritive traits and genomic heritability (h2g) was moderate to high (0.20 to 0.74). Family-by-location interactions were significant and particularly large for water soluble carbohydrate (WSC), crude fat, phosphorus (P) and crude protein. GBLUP, KGD-GBLUP and BayesCπ genomic prediction models displayed similar predictive ability, estimated by 10-fold cross validation, for all nutritive traits with values ranging from r = 0.16 to 0.45 using phenotypes from across two locations. High predictive ability was observed for the mineral traits sulfur (0.44), sodium (0.45) and magnesium (0.45) and the lowest values were observed for P (0.16), digestibility (0.22) and high molecular weight WSC (0.23). Predictive ability estimates for most nutritive traits were retained when marker number was reduced from one million to as few as 50,000. The moderate to high predictive abilities observed suggests implementation of genomic selection is feasible for most of the nutritive traits examined.


2013 ◽  
Vol 4 (3) ◽  
pp. 618-625 ◽  
Author(s):  
M. P. L. Calus ◽  
D. P. Berry ◽  
G. Banos ◽  
Y. de Haas ◽  
R. F. Veerkamp

Genomic selection is rapidly becoming the state-of-the-art genetic selection methodology in dairy cattle breeding schemes around the world. The objective of this paper was to explore possibilities to apply genomic selection for traits related to dairy cow robustness. Deterministic simulations indicate that replacing progeny testing with genomic selection may favour genetic response for production traits at the expense of robustness traits, owing to a disproportional change in accuracies obtained across trait groups. Nevertheless, several options are available to improve the accuracy of genomic selection for robustness traits. Moreover, genomic selection opens up the opportunity to begin selection for new traits using specialised reference populations of limited size where phenotyping of large populations of animals is currently prohibitive. Reference populations for such traits may be nucleus-type herds, research herds or pooled data from (international) research experiments or research herds. The RobustMilk project has set an example for the latter approach, by collating international data for progesterone-based traits, feed intake and energy balance-related traits. Reference population design, both in terms of relatedness of the animals and variability in phenotypic performance, is important to optimise the accuracy of genomic selection. Use of indicator traits, combined with multi-trait genomic prediction models, can further contribute to improved accuracy of genomic prediction for robustness traits. Experience to date indicates that for newly recorded robustness traits that are negatively correlated with the main breeding goal, cow reference populations of ⩾10 000 are required when genotyping is based on medium- or high-density single-nucleotide polymorphism arrays. Further genotyping advances (e.g. sequencing) combined with post-genomics technologies will enhance the opportunities for (genomic) selection to improve cow robustness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Amini ◽  
Felipe Restrepo Franco ◽  
Guiping Hu ◽  
Lizhi Wang

AbstractRecent advances in genomic selection (GS) have demonstrated the importance of not only the accuracy of genomic prediction but also the intelligence of selection strategies. The look ahead selection algorithm, for example, has been found to significantly outperform the widely used truncation selection approach in terms of genetic gain, thanks to its strategy of selecting breeding parents that may not necessarily be elite themselves but have the best chance of producing elite progeny in the future. This paper presents the look ahead trace back algorithm as a new variant of the look ahead approach, which introduces several improvements to further accelerate genetic gain especially under imperfect genomic prediction. Perhaps an even more significant contribution of this paper is the design of opaque simulators for evaluating the performance of GS algorithms. These simulators are partially observable, explicitly capture both additive and non-additive genetic effects, and simulate uncertain recombination events more realistically. In contrast, most existing GS simulation settings are transparent, either explicitly or implicitly allowing the GS algorithm to exploit certain critical information that may not be possible in actual breeding programs. Comprehensive computational experiments were carried out using a maize data set to compare a variety of GS algorithms under four simulators with different levels of opacity. These results reveal how differently a same GS algorithm would interact with different simulators, suggesting the need for continued research in the design of more realistic simulators. As long as GS algorithms continue to be trained in silico rather than in planta, the best way to avoid disappointing discrepancy between their simulated and actual performances may be to make the simulator as akin to the complex and opaque nature as possible.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Osval Antonio Montesinos-López ◽  
Abelardo Montesinos-López ◽  
Paulino Pérez-Rodríguez ◽  
José Alberto Barrón-López ◽  
Johannes W. R. Martini ◽  
...  

Abstract Background Several conventional genomic Bayesian (or no Bayesian) prediction methods have been proposed including the standard additive genetic effect model for which the variance components are estimated with mixed model equations. In recent years, deep learning (DL) methods have been considered in the context of genomic prediction. The DL methods are nonparametric models providing flexibility to adapt to complicated associations between data and output with the ability to adapt to very complex patterns. Main body We review the applications of deep learning (DL) methods in genomic selection (GS) to obtain a meta-picture of GS performance and highlight how these tools can help solve challenging plant breeding problems. We also provide general guidance for the effective use of DL methods including the fundamentals of DL and the requirements for its appropriate use. We discuss the pros and cons of this technique compared to traditional genomic prediction approaches as well as the current trends in DL applications. Conclusions The main requirement for using DL is the quality and sufficiently large training data. Although, based on current literature GS in plant and animal breeding we did not find clear superiority of DL in terms of prediction power compared to conventional genome based prediction models. Nevertheless, there are clear evidences that DL algorithms capture nonlinear patterns more efficiently than conventional genome based. Deep learning algorithms are able to integrate data from different sources as is usually needed in GS assisted breeding and it shows the ability for improving prediction accuracy for large plant breeding data. It is important to apply DL to large training-testing data sets.


2021 ◽  
Author(s):  
Agnieszka Konkolewska ◽  
Patrick Conaghan ◽  
Dan Milbourne ◽  
Michael Dineen ◽  
Susanne Barth ◽  
...  

2020 ◽  
Vol 71 (20) ◽  
pp. 6670-6683
Author(s):  
Xiongwei Zhao ◽  
Gang Nie ◽  
Yanyu Yao ◽  
Zhongjie Ji ◽  
Jianhua Gao ◽  
...  

Abstract Genomic prediction of nitrogen-use efficiency (NUE) has not previously been studied in perennial grass species exposed to low-N stress. Here, we conducted a genomic prediction of physiological traits and NUE in 184 global accessions of perennial ryegrass (Lolium perenne) in response to a normal (7.5 mM) and low (0.75 mM) supply of N. After 21 d of treatment under greenhouse conditions, significant variations in plant height increment (ΔHT), leaf fresh weight (LFW), leaf dry weight (LDW), chlorophyll index (Chl), chlorophyll fluorescence, leaf N and carbon (C) contents, C/N ratio, and NUE were observed in accessions , but to a greater extent under low-N stress. Six genomic prediction models were applied to the data, namely the Bayesian method Bayes C, Bayesian LASSO, Bayesian Ridge Regression, Ridge Regression-Best Linear Unbiased Prediction, Reproducing Kernel Hilbert Spaces, and randomForest. These models produced similar prediction accuracy of traits within the normal or low-N treatments, but the accuracy differed between the two treatments. ΔHT, LFW, LDW, and C were predicted slightly better under normal N with a mean Pearson r-value of 0.26, compared with r=0.22 under low N, while the prediction accuracies for Chl, N, C/N, and NUE were significantly improved under low-N stress with a mean r=0.45, compared with r=0.26 under normal N. The population panel contained three population structures, which generally had no effect on prediction accuracy. The moderate prediction accuracies obtained for N, C, and NUE under low-N stress are promising, and suggest a feasible means by which germplasm might be initially assessed for further detailed studies in breeding programs.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Cheng Bian ◽  
Dzianis Prakapenka ◽  
Cheng Tan ◽  
Ruifei Yang ◽  
Di Zhu ◽  
...  

Abstract Background Genomic selection using single nucleotide polymorphism (SNP) markers has been widely used for genetic improvement of livestock, but most current methods of genomic selection are based on SNP models. In this study, we investigated the prediction accuracies of haplotype models based on fixed chromosome distances and gene boundaries compared to those of SNP models for genomic prediction of phenotypic values. We also examined the reasons for the successes and failures of haplotype genomic prediction. Methods We analyzed a swine population of 3195 Duroc boars with records on eight traits: body judging score (BJS), teat number (TN), age (AGW), loin muscle area (LMA), loin muscle depth (LMD) and back fat thickness (BF) at 100 kg live weight, and average daily gain (ADG) and feed conversion rate (FCR) from 30 to100 kg live weight. Ten-fold validation was used to evaluate the prediction accuracy of each SNP model and each multi-allelic haplotype model based on 488,124 autosomal SNPs from low-coverage sequencing. Haplotype blocks were defined using fixed chromosome distances or gene boundaries. Results Compared to the best SNP model, the accuracy of predicting phenotypic values using a haplotype model was greater by 7.4% for BJS, 7.1% for AGW, 6.6% for ADG, 4.9% for FCR, 2.7% for LMA, 1.9% for LMD, 1.4% for BF, and 0.3% for TN. The use of gene-based haplotype blocks resulted in the best prediction accuracy for LMA, LMD, and TN. Compared to estimates of SNP additive heritability, estimates of haplotype epistasis heritability were strongly correlated with the increase in prediction accuracy by haplotype models. The increase in prediction accuracy was largest for BJS, AGW, ADG, and FCR, which also had the largest estimates of haplotype epistasis heritability, 24.4% for BJS, 14.3% for AGW, 14.5% for ADG, and 17.7% for FCR. SNP and haplotype heritability profiles across the genome identified several genes with large genetic contributions to phenotypes: NUDT3 for LMA, LMD and BF, VRTN for TN, COL5A2 for BJS, BSND for ADG, and CARTPT for FCR. Conclusions Haplotype prediction models improved the accuracy for genomic prediction of phenotypes in Duroc pigs. For some traits, the best prediction accuracy was obtained with haplotypes defined using gene regions, which provides evidence that functional genomic information can improve the accuracy of haplotype genomic prediction for certain traits.


2016 ◽  
pp. 139-143 ◽  
Author(s):  
M. J. Faville ◽  
S. Ganesh ◽  
R. Moraga ◽  
H. S. Easton ◽  
M. Z. Z. Jahufer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document