scholarly journals The Role of Biochar and Soil Properties in Determining the Available Content of Al, Cu, Zn, Mn, and Cd in Soil

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 885
Author(s):  
Niguss Solomon Hailegnaw ◽  
Filip Mercl ◽  
Kateřina Pračke ◽  
Lukáš Praus ◽  
Jiřina Száková ◽  
...  

The purpose of the study was to understand the mechanisms of biochar-induced changes in the available content of aluminum (Al), cadmium (Cd), zinc (Zn), copper (Cu), and manganese (Mn) in a wide range of soils. Five soils from different regions of the Czech Republic were incubated for 12 weeks with four rates of biochar (0.5%, 2%, 4%, and 8% w/w). The available concentrations of Al, Cd, Zn, Cu, and Mn were determined on the 7th and 84th day of incubation. There was a significant decline in the available content of Al, Zn, Cu, Mn, and Cd except in the available content of Al in one soil, which is characterized by very low Al content, higher cation exchange capacity (CEC), and neutral pH = 7.0. The decline in the mobile contents of Al, Zn, Cu, Mn, and Cd was significant in all cases of 8% biochar rate. The decline in the content of Al, Zn, Cu, Mn, and Cd was mainly due to the increment in soil pH and increment in CEC, decline in dissolved organic carbon (DOC), and the release of exchangeable Ca2+ and K+ from biochar. The application of high amounts of biochar to soil could increase the available content of some metals like Al. On the other hand, biochar could efficiently reduce the mobility of Al, Zn, Cu, Mn, and Cd in soil, while the decline is mainly caused by biochar-induced changes in soil pH, CEC, DOC, and exchangeable Ca2+ and K+ content of treated soils.

Soil Research ◽  
1992 ◽  
Vol 30 (2) ◽  
pp. 177 ◽  
Author(s):  
Z Hochman ◽  
DC Edmeades ◽  
E White

Eleven acidic soils from northern N.S.W., having a wide range of values for ECEC, A1 and soil organic carbon (%C), were treated in the field with five rates of lime. The relationships between soil pH and the effective cation exchange capacity (ECEC), and between pH and exchangeable aluminium (Al), were investigated for the top 10 cm of these soils. Increases in the total exchangeable cations (TEC) calculated as ECEC-Al, were shown to be madelup almost entirely by increases in exchangeable calcium. There were no consistent changes in the amount of exchangeable magnesium, potassium or sodium due to liming these acidic soils. Formulae used to predict changes in A1 and ECEC with pH in the 'Lime-it' model were tested and modified on the 11 soils from northern N.S.W. A strong linear relationship was observed in each soil between Al and pH (transformed to hydrogen ion concentration x 103). The slope of this relationship (SALs) can be predicted from the pH and A1 values of unlimed soils. Strong linear relationships were also observed between pH and TEC, for each of the 11 soils. The SL, (the slope of the linear relationship TEC/pH for any soil 's') was shown by multiple regression analysis to be a function of TECi/pHi (where TECi is the sum of exchangeable cations of unlimed soil 's'; and pHi is the pH value of unlimed soil 's'), %C of the unlimed soil, and SALs. By using the measured values of pH, ECEC, Al and %C of unlimed soils, the values of Al, and TEB can be predicted for any pH value that may be measured (or predicted) after liming. The predictive relationships developed on N.S.W. soils were tested against independent data from New Zealand. The results confirmed the Al/pH predictions (R2 = 0.955), while the TEC/pH predictions were less well matched (R2= 0.62) possibly due to unusual clay mineralogy or organic matter fractions of 3 of the 18 soils tested.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Tope O. Bolanle-Ojo ◽  
Abiodun D. Joshua ◽  
Opeyemi A. Agbo-Adediran ◽  
Ademola S. Ogundana ◽  
Kayode A. Aiyeyika ◽  
...  

Conducting binary-exchange experiments is a common way to identify cationic preferences of exchangeable phases in soil. Cation exchange reactions and thermodynamic studies of Pb2+/Ca2+, Cd2+/Ca2+, and Zn2+/Ca2+were carried out on three surface (0–30 cm) soil samples from Adamawa and Niger States in Nigeria using the batch method. The physicochemical properties studies of the soils showed that the soils have neutral pH values, low organic matter contents, low exchangeable bases, and low effective cation exchange capacity (mean: 3.27 cmolc kg−1) but relatively high base saturations (≫50%) with an average of 75.9%. The amount of cations sorbed in all cases did not exceed the soils cation exchange capacity (CEC) values, except for Pb sorption in the entisol-AD2 and alfisol-AD3, where the CEC were exceeded at high Pb loading. Calculated selectivity coefficients were greater than unity across a wide range of exchanger phase composition, indicating a preference for these cations over Ca2+. TheKeqvalues obtained in this work were all positive, indicating that the exchange reactions were favoured and equally feasible. These values indicated that the Ca/soil systems were readily converted to the cation/soil system. The thermodynamic parameters calculated for the exchange of these cations were generally low, but values suggest spontaneous reactions.


Author(s):  
Hermann C. de Albuquerque ◽  
Geraldo R. Zuba Junio ◽  
Regynaldo A. Sampaio ◽  
Luiz A. Fernandes ◽  
Fabiano B. S. Prates ◽  
...  

ABSTRACTThis study aimed to evaluate the residual effect of sewage sludge fertilization on yield and nutrition of sunflower in its second cycle. The experiment was carried out from April to August 2012. The treatments consisted of four doses of sewage sludge (0, 10, 20 and 30 t ha-1, dry basis) applied in the first cycle of sunflower, distributed in a randomized block design, with six replicates. Sunflower stem diameter, plant height, capitulum diameter and yield increased with the increment in sewage sludge doses, with maximum values observed with the dose of 30 t ha-1. The contents of calcium and magnesium in the soil, pH, sum of bases, effective and potential cation exchange capacity and base saturation increased, while potential acidity and the contents of manganese and iron in the leaves decreased, with the increment in the residual doses of sewage sludge. There was a reduction in yield and growth characteristics of sunflower in the second cycle; thus, additional fertilization with sewage sludge is recommended in each new cycle.


2014 ◽  
Vol 4 ◽  
Author(s):  
Verónica Asensio Fandiño ◽  
Flora A. Vega ◽  
Rubén Forján ◽  
Emma F. Covelo

The sorption capacity for Ni, Pb and Zn of mine tailings soil with and without reclamation treatment (tree planting and waste amendment) was evaluated using the batch adsorption technique. It is important to determine the capacity of waste-amended soils to retain Ni, Pb and Zn, as the sludges used usually have high concentrations of these metals. The results obtained in the present study showed that the untreated mine tailings soil had a low capacity for Ni, Pb and Zn retention. The sorption capacity for Pb increased significantly in all of the treated soils, without any significant differences between them. The treatment that most increased the sorption capacity for Ni and Zn was planting with trees and amending with waste simultaneously, as this increased the concentration of both organic and inorganic carbon, exchangeable calcium, soil pH and effective cation exchange capacity


1969 ◽  
Vol 69 (3) ◽  
pp. 357-365
Author(s):  
Edmundo Rivera ◽  
José Rodríguez ◽  
Fernando Abruña

The effect of acidity factors of two Ultisols and one Oxisol on yield and foliar composition of tomatoes was determined. Yields were not markedly reduced by acidity in the Ultisols until pH dropped to around 4.6 with 45% Al saturation of the cation exchange capacity (CEC), and no yield was produced at about pH 4.1 and 80% Al saturation. In the Oxisol, tomato yields dropped steadily from 39.7 t/ha, when there was no exchangeable AI, to 17.5 t/ha at the highest level of acidity, pH 4.4 and 43% AI saturation. In all soils, yields were closely correlated with soil pH, exchangeable Al and Ca and Al/Ca.


1977 ◽  
Vol 57 (3) ◽  
pp. 233-247 ◽  
Author(s):  
ROGER W. BARIL ◽  
THI SEN TRAN

Correlations were made among chemical criteria used for taxonomic soil classificaton. The compared tests were: oxalate Δ (Fe + Al), pyrophosphate-extractable (Fe + Al), oxalate-extractable Al, pH-dependent cation exchange capacity (ΔCEC), ratios of pyrophosphate-extractable (Fe + Al) over clay or over dithionite-extractable (Fe + Al), and finally soil pH measured in 1 M NaF. Significant correlations were found among various measured parameters. However, no single test was found to be reliable as a single criterion when applied to the taxonomic classification of Quebec soils. The two chemical tests, pyrophosphate-extractable (Fe + Al) and its ratio over clay, combined with morphologic criteria appeared useful for classifying Quebec Podzols. A few soils, which presented discrepancies from chemical criteria were found difficult to classify, thus suggesting the possibility of establishing new sub-groups in the Canadain soil taxonomic classification system.


Author(s):  
R. Greene-Kelly

Studies of the effect of dehydration at temperatures greater than 150° on sorption by montmorillonites have shown that small interlayer cations such as lithium and magnesium promote an irreversible decrease in the amount of interlamellar sorption and a consequent marked fall in the cation exchange capacity as measured by conventional methods (1, 2, 3, 4). The other minerals of the group do not show this property (4), which is quite distinct from the supposed 'potassium fixation' reported in these minerals (5). This latter effect, which is small for montmorillonite, refers to the decreased rate of exchange of potassium as compared with smaller exchange cations especially after the potassium-saturated mineral has been dried at ]00° C., and has been shown to be much more marked in mica-like minerals with silicate layers of higher charge density (e.g. illites and vermiculites (6)). The amount of water sorbed by potassium-saturated montmorillonite is not significantly affected by drying at temperatures below 400° C. although it is less than that of most other montmorilIonites (3), due probably to the low hydration energy of the potassium ion (7).


2017 ◽  
Vol 29 (2) ◽  
pp. 123-131
Author(s):  
Reshma Akter ◽  
Md Jamal Uddin ◽  
Md Faruque Hossain ◽  
Zakia Parveen

A study was carried out to evaluate the effects of brick manufacturing on phosphorus (P) and sulfur (S) concentrations in soil and plant collected from different distances of brick kilns in four AEZs of Bangladesh. Forty eight composite soil samples (0 - 15 cm depth) were collected from 48 points in 12 different sites at 0 m, 300 m, 800 m and 1500 m from brick kilns, where most (site 2, site 3, site 5, site 6, site 7, site 9 and site 10) of the brick kilns used coal for brick burning purposes. Plant samples (rice straw and different vegetables) were also collected from the respective fields except 0 m distances. Significantly (p ? 0.05) lower organic matter, cation exchange capacity, clay content and soil pH were found at 0 m distances compared to other distances. Highest concentration of total P in soil were recorded at 0 m distances and these concentrations decreased with increasing distances from the brick kilns in most of the sites; whereas available P is significantly lower at 0 m distances than that of other distances. Total and available concentration of S in soil followed the trend 0 m>300 m>800 m>1500 m. Maximum accumulation of P (69.15 mg kg-1) and S (0.14%) in plant was found at 800 m away from the brick kiln.Bangladesh J. Sci. Res. 29(2): 123-131, December-2016


Sign in / Sign up

Export Citation Format

Share Document