scholarly journals In-Depth Field Characterization of Teff [Eragrostis tef (Zucc.) Trotter] Variation: From Agronomic to Sensory Traits

Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1107
Author(s):  
Lianne Merchuk-Ovnat ◽  
Jajaw Bimro ◽  
Noga Yaakov ◽  
Yaarit Kutsher ◽  
Orit Amir-Segev ◽  
...  

Teff is an important food crop that serves to prepare Injera-flat-bread. It is cultivated worldwide and is particularly susceptible to lodging. A diverse collection of teff [Eragrostis tef (Zucc.) Trotter] populations was characterized for a wide range of traits, ranging from agronomic to final Injera sensory parameters, under well-irrigated Mediterranean spring conditions. The populations tested were collected from single plants presenting lodging resistance at the site of collection and their traits were characterized herein. An early type of lodging was observed, which was most likely triggered by a fast and sharp inflorescence weight increase. Other populations were ‘strong’ enough to carry the inflorescence during most of the grain-filling period, up to a point where strong lodging occurred and plants where totally bent to the ground. Three mixed color seed populations were established from a single plant. These were separated into ‘white’ and ‘brown’ seeds and were characterized separately under field conditions. The newly ‘brown’ populations appear to be the result of a rather recent non-self (external) airborne fertilization from a dark pollen donor. Some of these hybrids were found to be promising in terms of Injera sensory traits. The population of these studies might serve as breeding material. Integration between a wide range of parameters and the correlations obtained between agronomic and sensory traits might improve our ability to breed towards a “real world” better end-product.

2008 ◽  
Vol 48 (3) ◽  
pp. 358 ◽  
Author(s):  
Y. S. Chauhan ◽  
G. C. Wright ◽  
N. C. Rachaputi

Aflatoxins are highly carcinogenic mycotoxins produced by two fungi, Aspergillus flavus and A. parasiticus, under specific moisture and temperature conditions before harvest and/or during storage of a wide range of crops including maize. Modelling of interactions between host plant and environment during the season can enable quantification of preharvest aflatoxin risk and its potential management. A model was developed to quantify climatic risks of aflatoxin contamination in maize using principles previously used for peanuts. The model outputs an aflatoxin risk index in response to seasonal temperature and soil moisture during the maize grain filling period using the APSIM’s maize module. The model performed well in simulating climatic risk of aflatoxin contamination in maize as indicated by a significant R2 (P ≤ 0.01) between aflatoxin risk index and the measured aflatoxin B1 in crop samples, which was 0.69 for a range of rainfed Australian locations and 0.62 when irrigated locations were also included in the analysis. The model was further applied to determine probabilities of exceeding a given aflatoxin risk in four non-irrigated maize growing locations of Queensland using 106 years of historical climatic data. Locations with both dry and hot climates had a much higher probability of higher aflatoxin risk compared with locations having either dry or hot conditions alone. Scenario analysis suggested that under non-irrigated conditions the risk of aflatoxin contamination could be minimised by adjusting sowing time or selecting an appropriate hybrid to better match the grain filling period to coincide with lower temperature and water stress conditions.


2017 ◽  
Vol 107 (12) ◽  
pp. 1468-1478 ◽  
Author(s):  
F. van den Berg ◽  
N. D. Paveley ◽  
I. J. Bingham ◽  
F. van den Bosch

Tolerance is defined as the ability of one cultivar to yield more than another cultivar under similar disease severity. If both cultivars suffer an equal loss in healthy (green) leaf area duration (HAD) over the grain filling period due to disease presence, then the yield loss per unit HAD loss is smaller for a more tolerant cultivar. Little is understood of what physiological and developmental traits of cultivars determine disease tolerance. In this study, we use a mathematical model of wheat to investigate the effect of a wide range of wheat phenotypes on tolerance. During the phase from stem extension to anthesis, the model calculates the assimilate source and sink potential, allowing for dynamic changes to the source–sink balance by partitioning assimilates between ear development and storage of water-soluble carbon (WSC) reserves, according to assimilate availability. To quantify tolerance, rates of epidemic progress were varied on each phenotype, leading to different levels of HAD loss during the postanthesis, grain-filling period. Model outputs show that the main determinant of tolerance is the total amount of assimilate produced per grain during the rapid grain-fill period, leading to a strong positive correlation between HAD per grain and tolerance. Reductions in traits that affect carbon assimilation rate and increases in traits that determine the amount of structural biomass in the plant increase disease tolerance through their associated reduction in number of grains per ear. Some of the most influential traits are the canopy green area index, carbon use efficiency, and leaf specific weight. Increased WSC accumulation can either increase or decrease tolerance. Furthermore, a cultivar is shown to be maximally tolerant when a crop is able to just fill its total sink size in the presence of disease. The model has identified influential functional traits and established that their associations with tolerance have a mechanistic basis.


1968 ◽  
Vol 19 (3) ◽  
pp. 365 ◽  
Author(s):  
JA Parish ◽  
NJ Halse

Wheat grain was harvested at maximum dry weight and dried under various conditions in the laboratory. Results showed that opaque grain was produced by fast drying; translucency developed with slow drying. The effect of various temperatures when drying rate was constant was also measured. It was found that translucency developed more at high temperatures than at low temperatures. There was little "mottling" despite the wide range between treatments from entirely opaque to fully translucent grain. Drying techniques were found whereby grain samples different in texture but identical in other respects can be prepared. In other experiments wheat plants were grown in controlled light and temperature conditions during the grain-filling period. Results showed that at this stage low temperature and low light intensity favoured the development of translucency.


2020 ◽  
Author(s):  
Dargicho Dutamo ◽  
Ermias Assefa ◽  
Muluneh Menamo

ABSTRACTTef [Eragrostis tef (Zucc.) Trotter] is a cereal crop resilient to adverse climatic and soil conditions, and possessing desirable storage properties. It is, a tetraploid with 40 chromosomes (2n = 4x = 40), belongs to the family Poaceae and, together with finger millet (Eleusine coracana Gareth.), to the subfamily Chloridoideae. It was originated and domesticated in Ethiopia. The experiment was conducted to identify, select and recommend adaptable, high yielding, Insect pest and disease resistant twelve released and one local variety at Main Campus Site Hadiya zone of SNNPR. Twelve tef varieties were evaluated in RCBD with three replications on station of Main Campus Site during main cropping season of 2019/2020. Analysis of variance revealed that there were significant differences among tef varieties, Culm length, panicle length, plant height, days to heading, days to maturity, grain filling period, primary panicle brunch, grain yield, biomass yield and harvest index at Main Campus site. Based on the obtained result, the improved tef varieties namely; DZ-Cr-438 DZ-Cr-974 (Dukem), DZ-01-899 (Gimbechu) and DZ-01-196 (Magna) at Main Campus site. Therefore, these varieties showed better performance for most of the studied characters including grain yield. Therefore, these varieties were selected and recommended for the study area and similar ecologies of Hadiya Zone. This finding, being the result of one year with single location, it is recommended that the experiment should be repeated at multi locations for several years to confirm the obtained results.


1980 ◽  
Vol 60 (4) ◽  
pp. 1101-1107 ◽  
Author(s):  
M. PERENZIN ◽  
F. FERRARI ◽  
M. MOTTO

Forty Italian open-pollinated varieties of corn (Zea mays L.), selected to represent a wide range of plant maturity and grain weight, were evaluated in 1977 and 1978 to determine genetic variances and heritabilities for length and rate of grain-filling period, kernel weight and three seed-quality traits and to examine relationships among these traits. The results showed highly significant genotypic differences and high heritability estimates for most of the traits studied. Moreover, kernel weight and rate of grain filling were found to be closely associated, although this relationship could not be statistically tested. A relatively high correlation was also detected between kernel weight and length of the grain-filling period. The increase in seed weight obtained through a delay in black-layer formation was associated with a higher grain moisture content and a decreased grain protein percentage. A further noteworthy finding of this study was the identification of two varieties which attained a large seed weight in a relatively short time through a very high rate of dry matter accumulation. The implications of these findings are discussed from a physiological and breeding point of view.


2015 ◽  
Vol 41 (4) ◽  
pp. 548 ◽  
Author(s):  
Dong-Ling ZHANG ◽  
Hong-Na ZHANG ◽  
Chen-Yang HAO ◽  
Lan-Fen WANG ◽  
Tian LI ◽  
...  

2013 ◽  
Vol 38 (9) ◽  
pp. 1698-1709
Author(s):  
Tian-Jun XU ◽  
Zhi-Qiang DONG ◽  
Jiao GAO ◽  
Chuan-Xiao CHEN ◽  
Liu JIAO ◽  
...  

Polymer Chemistry: A Practical Approach in Chemistry has been designed for both chemists working in and new to the area of polymer synthesis. It contains detailed instructions for preparation of a wide-range of polymers by a wide variety of different techniques, and describes how this synthetic methodology can be applied to the development of new materials. It includes details of well-established techniques, e.g. chain-growth or step-growth processes together with more up-to-date examples using methods such as atom-transfer radical polymerization. Less well-known procedures are also included, e.g. electrochemical synthesis of conducting polymers and the preparation of liquid crystalline elastomers with highly ordered structures. Other topics covered include general polymerization methodology, controlled/"living" polymerization methods, the formation of cyclic oligomers during step-growth polymerization, the synthesis of conducting polymers based on heterocyclic compounds, dendrimers, the preparation of imprinted polymers and liquid crystalline polymers. The main bulk of the text is preceded by an introductory chapter detailing some of the techniques available to the scientist for the characterization of polymers, both in terms of their chemical composition and in terms of their properties as materials. The book is intended not only for the specialist in polymer chemistry, but also for the organic chemist with little experience who requires a practical introduction to the field.


2021 ◽  
Vol 22 (4) ◽  
pp. 2104
Author(s):  
Pedro Robles ◽  
Víctor Quesada

Eleven published articles (4 reviews, 7 research papers) are collected in the Special Issue entitled “Organelle Genetics in Plants.” This selection of papers covers a wide range of topics related to chloroplasts and plant mitochondria research: (i) organellar gene expression (OGE) and, more specifically, chloroplast RNA editing in soybean, mitochondria RNA editing, and intron splicing in soybean during nodulation, as well as the study of the roles of transcriptional and posttranscriptional regulation of OGE in plant adaptation to environmental stress; (ii) analysis of the nuclear integrants of mitochondrial DNA (NUMTs) or plastid DNA (NUPTs); (iii) sequencing and characterization of mitochondrial and chloroplast genomes; (iv) recent advances in plastid genome engineering. Here we summarize the main findings of these works, which represent the latest research on the genetics, genomics, and biotechnology of chloroplasts and mitochondria.


Sign in / Sign up

Export Citation Format

Share Document