scholarly journals Effect of Bacterial Inoculum and Fertigation Management on Nursery and Field Production of Lettuce Plants

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1477 ◽  
Author(s):  
Filippo Vetrano ◽  
Claudia Miceli ◽  
Vincenzo Angileri ◽  
Benedetto Frangipane ◽  
Alessandra Moncada ◽  
...  

Plant growth-promoting rhizobacteria have been applied to different vegetable crops but there is still no information on the effect of bacterial biostimulant application under variable nutritional level on lettuce seedlings and their performance after transplanting in the field. This study aimed to evaluate the efficacy of a bacterial biostimulant to enhance growth and quality of lettuce seedlings fertigated with increasing nutrient rates and to assess the efficacy of these treatments on lettuce head production. Lettuce seedlings were inoculated with 1.5 g L−1 of TNC BactorrS13 (a commercial biostimulant containing 1.3 × 108 CFU g−1 of Bacillus spp.) and fertigated with a nutrient solution containing 0, 1, 2, and 4 g L−1 of NPK fertilizer (20-20-20). At the end of transplant production, the plants were evaluated for greenhouse cultivation. The effect of fertigation rate on seedling height, dry biomass, dry matter percentage, and water use efficiency was evident up to 2 g L−1 of fertilizer in the non-inoculated seedlings, whereas fresh biomass and nitrogen use efficiency changed up to 4 g L−1 of fertilizer. The use of the bacterial biostimulant modified seedling growth and its response to nutrient availability. The inoculation of the substrate with Bacillus spp. promoted plant growth and allowed seedlings to reach the highest height and biomass accumulation. The physiological age of lettuce seedlings showed a strong influence on plant growth and production after transplanting. The bacterial treatment positively affected the yield and nitrate content of lettuce plants.

2021 ◽  
Vol 22 (22) ◽  
pp. 12245
Author(s):  
Manoj Kumar ◽  
Ved Prakash Giri ◽  
Shipra Pandey ◽  
Anmol Gupta ◽  
Manish Kumar Patel ◽  
...  

Vegetable cultivation is a promising economic activity, and vegetable consumption is important for human health due to the high nutritional content of vegetables. Vegetables are rich in vitamins, minerals, dietary fiber, and several phytochemical compounds. However, the production of vegetables is insufficient to meet the demand of the ever-increasing population. Plant-growth-promoting rhizobacteria (PGPR) facilitate the growth and production of vegetable crops by acquiring nutrients, producing phytohormones, and protecting them from various detrimental effects. In this review, we highlight well-developed and cutting-edge findings focusing on the role of a PGPR-based bioinoculant formulation in enhancing vegetable crop production. We also discuss the role of PGPR in promoting vegetable crop growth and resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) and biotic (fungi, bacteria, nematodes, and insect pests) stresses.


2021 ◽  
Vol 9 (11) ◽  
pp. 2398
Author(s):  
Ibraheem Olamide Olasupo ◽  
Qiuju Liang ◽  
Chunyi Zhang ◽  
Md Shariful Islam ◽  
Yansu Li ◽  
...  

Agronomic biofortification of horticultural crops using plant growth-promoting rhizobacteria (PGPR) under crop residue incorporation systems remains largely underexploited. Bacillus subtilis (B1), Bacillus laterosporus (B2), or Bacillus amyloliquefaciens (B3) was inoculated on soil containing chili residue, while chili residue without PGPR (NP) served as the control. Two hybrid long cayenne peppers, succeeding a leaf mustard crop were used in the intensive cultivation study. Net photosynthesis, leaf stomatal conductance, transpiration rate, photosynthetic water use efficiency, shoot and root biomass, and fruit yield were evaluated. Derivatives of folate, minerals, and nitrate contents in the pepper fruits were also assessed. B1 elicited higher net photosynthesis and photosynthetic water use efficiency, while B2 and B3 had higher transpiration rates than B1 and NP. B1 and B3 resulted in 27–36% increase in pepper fruit yield compared to other treatments, whereas B3 produced 24–27.5% and 21.9–27.2% higher 5-methyltetrahydrofolate and total folate contents, respectively, compared to B1 and NP. However, chili residue without PGPR inoculation improved fruit calcium, magnesium, and potassium contents than the inoculated treatments. ‘Xin Xian La 8 F1’ cultivar had higher yield and plant biomass, fruit potassium, total soluble solids, and total folate contents compared to ‘La Gao F1.’ Agronomic biofortification through the synergy of Bacillus amyloliquefaciens and chili residue produced better yield and folate contents with a trade-off in the mineral contents of the greenhouse-grown long cayenne pepper.


Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 179 ◽  
Author(s):  
Alawiye ◽  
Babalola

Bacteria play a vital role in the quality of soil, health, and the production of plants. This has led to several studies in understanding the diversity and structure in the plant rhizosphere. Over the years, there have been overwhelming advances in molecular biology which have led to the development of omics techniques which utilize RNA, DNA, or proteins as biomolecules; these have been gainfully used in plant–microbe interactions. The bacterial community found in the rhizosphere is known for its colonization around the roots due to availability of nutrients, and composition, and it affects the plant growth directly or indirectly. Metabolic fingerprinting enables a snapshot of the metabolic composition at a given time. We review metabolites with ample information on their benefit to plants and which are found in rhizobacteria such as Pseudomonas spp. and Bacillus spp. Exploring plant-growth-promoting rhizobacteria using omics techniques can be a true success story for agricultural sustainability.


1998 ◽  
Vol 44 (10) ◽  
pp. 980-988 ◽  
Author(s):  
Elizabeth Bent ◽  
Christopher P Chanway

To test the hypothesis that rhizobacteria naturally present in soils may interfere with the extent of root colonization and plant growth promotion by plant growth-promoting rhizobacteria (PGPR), we studied two lodgepole pine PGPR (Bacillus polymyxa strains L6 and Pw-2) when inoculated singly and when coinoculated with a non-PGPR competitor (Curtobacterium flaccumfaciens PF322). Bacillus polymyxa Pw-2 and Curtobacterium flaccumfaciens PF322 were consistently found as endophytes, while Bacillus polymyxa L6 was never found within the root interior. Strains Pw-2 and L6 differed in the rate and type of growth promotion. Strain Pw-2 increased root growth (branching and elongation) and shoot biomass accumulation 6 and 9 weeks, respectively, after inoculation, while strain L6 increased primary root elongation and root biomass accumulation after 12 weeks. Seedlings coinoculated with Pw-2 and PF322 had decreased shoot biomass and primary root lengths when compared with seedlings inoculated only with Pw-2. This effect was not linked to a decrease in the population size of Pw-2 in the rhizosphere or in the root interior of coinoculated treatments. In contrast, strain L6-mediated growth promotion was not impaired by coinoculation with PF322. Strain L6 did interfere to some degree with the growth-promoting capability of strain Pw-2. These results indicate that endophytic PGPR may be less adapted to microbial competition than external root-colonizing PGPR, and that the efficacy of endophytic PGPR may be reduced by the presence of other bacteria on external or internal root tissues.Key words: PGPR, endophytes, colonization, coinoculation, competition.


2013 ◽  
Vol 7 (19) ◽  
pp. 2087-2092 ◽  
Author(s):  
Dias Anelise ◽  
Gomes dos Santos Silvana ◽  
Gomes da Silva Vasconcelos Vinicius ◽  
Radl Viviane ◽  
Ribeiro Xavier Gustavo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document