scholarly journals Determining the Combining Ability and Gene Action for Rice Yellow Mottle Virus Disease Resistance and Agronomic Traits in Rice (Oryza sativa L.)

Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 12
Author(s):  
William Titus Suvi ◽  
Hussein Shimelis ◽  
Mark Laing ◽  
Isack Mathew ◽  
Admire I. T. Shayanowako

Selecting genetically diverse and complementary parental lines and superior crosses are pre-requisites in developing improved cultivars. The objectives of this study were to determine the combining ability effects and gene action conditioning rice yellow mottle virus disease (RYMVD) resistance and agronomic traits in rice (Oryza sativa L.). Ten parental lines and their 45 F2 progenies were field evaluated in three locations using a 5 × 11 alpha lattice design with two replications. The genotype × site interaction effects were significant (p < 0.05) for the number of tillers (NT), number of panicles per plant (NPP), number of grains per panicle (NGP), percentage of filled grains (PFG), thousand grain weight (TGW), RYMVD resistance and grain yield (GY). The analysis of general and specific combining ability (GCA and SCA) indicated involvement of both additive and non-additive gene action governing inheritance of traits. High GCA/SCA ratio estimate revealed additive genetic effect was predominant. Parental lines Mwangaza, Lunyuki, Salama M-57, Salama M-19, IRAT 256 and Salama M-55, which had negative GCA effects for RYMVD, and families such as SARO 5 × Salama M-55, IRAT 245 × Rangimbili, Rangimbili × Gigante and Rangimbili × Mwangaza, which had negative SCA effects for RYMVD, were selected for RYMV resistance breeding. The crosses Rangimbili × Gigante, Gigante × Salama M-19 and Rangimbili × Salama M-55 were selected due to their desirable SCA effects for GY. The predominance of additive gene effects for agronomic traits and RYMVD resistance in the present breeding populations suggested that rice improvement could be achieved through gene introgression using recurrent selection.

2014 ◽  
Vol 12 (1) ◽  
pp. 1-8
Author(s):  
BP Mallikarjuna ◽  
N Shivakumar ◽  
J Devendrappa ◽  
VD Sheela ◽  
G Bharamappa ◽  
...  

Combining ability on grain yield and its components from line × tester analysis of thirty rice hybrids (Oryza sativa L.) produced by crossing three newly developed CMS lines and ten testers of local origin were studied. The analysis revealed higher SCA variance than GCA variance for all the characters except plant height indicating the prevalence of non-additive gene action. The line KCMS 45A and testers MSN 36 and KMR 3 were the good general combiners for yield and its major contributing characters. MSN 99 was the only good general combiner among the male parents for earliness and dwarfness. The hybrids KCMS 46A × MSN 75, KCMS 44A × KMR 4 and KCMS 45A × KMR 3 were identified as potential hybrids for yield contributing characters based on SCA effects which could be exploited in future rice breeding programme by adopting heterosis breeding strategy. The contribution of testers towards the total variance was found higher than lines and line x tester interaction suggesting predominant of testers influence for these characters. DOI: http://dx.doi.org/10.3329/sja.v12i1.21107 SAARC J. Agri., 12(1): 1-8 (2014)


2019 ◽  
Vol 10 (1) ◽  
pp. 58
Author(s):  
M. Asvin Kirubha ◽  
R. P. Gnanamalar ◽  
K. Thangaraj ◽  
A. Kavitha Pushpam ◽  
A. R. Priyanka

Author(s):  
Durgesh Kumar Shukla ◽  
S. N. Singh ◽  
S. C. Gaur ◽  
Anil Kumar

Information on combining ability is derived from data on twelve yield and yield contributing characters in fifteen male and three female parents utilised in line x tester fashion to estimate combining ability of rice genotypes under coastal saline condition. Forty Five hybrids generated from crossing three lines with fifteen testers were studied along with their parents for combining ability and gene action involved in the expression of characters in rice. The gca and sca effects were significant for all the characters. The magnitude of sca variance was higher than the gca variance for all the characters revealed the presence of predominance of non-additive gene action for all the characters under study. Halchal (-12.29) was found to be good general combiners for days to 50% flowering and early maturity, Halchal (-13.39). However, IR-24 (1.88) was good general combiners with significant positive effect for tallness. Magic (-12.05) good general combiners for dwarfness and Shriram 434 (1.57) was good general combiners for test weight however, Moti was best general combiner with gca estimates of 7.07 for harvest index and Kuber (3.48) was the good general combiners for yield/hill. Cross combinations RHR 27 x IR 24 (4.04) was significant and positive effect for yield/hill, performance for ear bearing tillers per plant were RHR 27 x IR 24 (1.88). In general, the crosses showing significant and desirable combining ability effects were associated with better per se performance for the respective traits. These hybrids could be utilized in heterosis breeding to exploit hybrid vigour.


Author(s):  
Alireza Haghighi Hasanalideh ◽  
Mehrzad Allahgholipour ◽  
Ezatollah Farshadfar

This study was undertaken to assess the combining ability of 6 rice varieties, for viscosity parameters and determining gene action controlling Rapid Visco Analyser (RVA) characters. F2 progenies derived from a 6×6 half diallel mating design with their parents were grown in a randomized complete block design with three replications at the research farm of Rice Research Institute of Iran (RRII) in 2015. The diallel analysis by Griffing`s method indicated the involvement of additive and non-additive gene actions controlling RVA traits. For traits PV and FV RI18447-2 and IR50 were the best combiners for increasing and decreasing, respectively. Deylamani and IR50 were the best combiners for increasing and decreasing BV, respectively. Beside, due to more portion of non-additive gene action in controlling trait SV, The Gilaneh × RI18430-46, and Deylamani × RI18430-46 crosses were the best for increasing and decreasing SV, respectively. The high estimates of broad sense heritability and narrow sense heritability for BV and FV, indicated the importance of additive effects in expression of these traits. Therefore, selection base breeding methods will be useful to improve these traits and selection in the early generations could be done to fix the favourable genes. Low estimate of narrow sense heritability for SV revealed that non-additive gene effects play important role in controlling setback viscosity. So, hybrid base breeding methods will be useful to improve this trait.


2015 ◽  
Vol 3 (1) ◽  
pp. 73-79
Author(s):  
Golam Sarwar ◽  
Md. Sarowar Hossain ◽  
Md.Harun -Ur- Rashid ◽  
Shahanaz Parveen

The present study was conducted in the experimental farm, Sher-e-Bangla Agricultural University (SAU), Dhaka during July 2013-December2013. The analysis of variance revealed significant deviation for all the characters studied and indicated the existence of variation among thegenotypes. The PCV values were slightly higher than the respective GCV values for all the characters except unfilled grains per panicleindicating that the characters were less influenced by the environment. Total tillers per plant, effective tillers per plant, filled grains per panicle,unfilled grains per panicle and yield per plant showed high heritability coupled with high genetic advance percentage of mean which indicatedthe preponderance of additive gene action and such characters could be improved through selection. High heritability along with low geneticadvance as percentage of mean was found for plant height, days to 50% flowering, panicle length, days to maturity and thousand grains weightwhich indicated the non additive gene action for expression of these characters. Considering the genetic parameters and other agronomicperformances, the genotypes Special from AL-29, AL-36, PP-4B(i), AL-17(iii)B, AL-17(iii), AL-17(ii)A, Special from-129, Special from17(iv), AL-44(i), AL-17, Special from AL-36(D), PP-48, IR-25B, Special from AL-33, IR-25B (Tall), P-5B (ii) might be considered betterparents for future hybridization programme.DOI: http://dx.doi.org/10.3126/ijasbt.v3i1.11896    Int J Appl Sci Biotechnol, Vol. 3(1): 73-79 


2016 ◽  
Vol 8 (11) ◽  
pp. 138 ◽  
Author(s):  
Lawrence Owere ◽  
Pangirayi Tongoona ◽  
John Derera ◽  
Nelson Wanyera

<p>Blast disease is the most important biotic constraint to finger millet production. Therefore disease resistant varieties are required. However, there is limited information on combining ability for resistance and indeed other agronomic traits of the germplasm in Uganda. This study was carried out to estimate the combining ability and gene effects controlling blast disease resistance and selected agronomic traits in finger millet. Thirty six crosses were generated from a 9 × 9 half diallel mating design. The seed from the 36 F<sub>1</sub> crosses were advanced by selfing and the F<sub>2</sub> families and their parents were evaluated in three replications. General combining ability (GCA) for head blast resistance and the other agronomic traits were all highly significant (p ≤ 0.01), whereas specific combining ability (SCA) was highly significant for all traits except grain yield and grain mass head<sup>-1</sup>. On partitioning the mean sum of squares, the GCA values ranged from 31.65% to 53.05% for head blast incidence and severity respectively, and 36.18% to 77.22% for the other agronomic traits measured. Additive gene effects were found to be predominant for head blast severity, days to 50% flowering, grain yield, number of productive tillers plant<sup>-1</sup>, grain mass head<sup>-1</sup>, plant height and panicle length. Non-additive gene action was predominant for number of fingers head<sup>-1</sup>, finger width and panicle width. The parents which contributed towards high yield were <em>Seremi 2</em>, <em>Achaki</em>, <em>Otunduru</em>, <em>Bulo</em> and <em>Amumwari</em>. Generally, highly significant additive gene action implied that progress would be made through selection whereas non-additive gene action could slow selection progress and indicated selection in the later generations.</p>


2017 ◽  
Vol 12 (Special-5) ◽  
pp. 1213-1221
Author(s):  
N. SRAVAN RAJU ◽  
P. SENGUTTUVEL ◽  
A.S. HARI PRASAD ◽  
P. BEULAH ◽  
P. NAGANNA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document