scholarly journals The C4 Atriplex halimus vs. the C3 Atriplex hortensis: Similarities and Differences in the Salinity Stress Response

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1967
Author(s):  
Roberta Calone ◽  
Antonio Cellini ◽  
Luigi Manfrini ◽  
Carla Lambertini ◽  
Paola Gioacchini ◽  
...  

Soil properties and the ability to sustain agricultural production are seriously impaired by salinity. The cultivation of halophytes is seen as a solution to cope with the problem. In this framework, a greenhouse pot experiment was set up to assess salinity response in the perennial C4 species Atriplex halimus, and in the following three cultivars of the annual C3 Atriplex hortensis: green, red, and scarlet. The four genotypes were grown for 35 days with water salinity (WS) ranging from 0 to 360 mM NaCl. Plant height and fresh weight (FW) increased at 360 vs. 0 WS. The stomatal conductance (GS) and transpiration rate (E) were more severely affected by salinity in the C4 A. halimus than in the C3 species A. hortensis. This was reflected in a lower leaf water potential indicating stronger osmotic adjustment, and a higher relative water content associated with more turgid leaves, in A. halimus than A. hortensis. In a PCA including all the studied traits, the GS and E negatively correlated to the FW, which, in turn, positively correlated with Na concentration and intrinsic water use efficiency (iWUE), indicating that reduced gas exchange associated with Na accumulation contributed to sustain iWUE under salinity. Finally, FTIR spectroscopy showed a reduced amount of pectin, lignin, and cellulose under salinity, indicating a weakened cell wall structure. Overall, both species were remarkably adapted to salinity: From an agronomic perspective, the opposite strategies of longer vs. faster soil coverage, involved by the perennial A. halimus vs. the annual A. hortensis cv. scarlet, are viable natural remedies for revegetating marginal saline soils and increasing soil organic carbon.

Author(s):  
Jeff Licht ◽  
Nicholas G. Smith

Plants utilizing C3 physiology have a more difficult time establishing in rooftop environments than plants with more heat and drought adapted constitutions, such as species that employ crassulacean acid metabolism (CAM). CAM species are much less susceptible to limitations of shallow, infertile soil-less media under abiotic and biotic stress. It is thought that soil amendments might improve rooftop media in a way that allows for C3 species to prosper in rooftop environments. While compost is typically added to media to achieve this goal, we hypothesized that the addition of an anthropogenic pyrogenic carbon (PyC) supplement, instead, would enable better organic and mineral sorption and water retention, resulting in improved physiological performance of C3 species. To test this, we grew a C3 legume species, wild indigo (Baptisia tinctoria L R.Br. ex), in control compost-amended media and media amended by PyC on a rooftop in Massachusetts, USA. We found PyC-amended media had greater mean organic and mineral nutrient sorption. We also found 16% greater soil water holding capacity (GWL/ψ g) than control media. In addition, wild indigo photosynthetic intrinsic water use efficiency (iWUE) was significantly increased by 19% when grown in PyC-amended as compared to control media. We conclude that amending green roof media with PyC provides greater benefits than compost amendments for colonization of a C3 legume, wild indigo. Our results gathered over seven years suggest that PyC from converted waste stream cardboard could be used to improve the rooftop performance of other leguminous species, including agricultural crops.


2021 ◽  
Vol 11 ◽  
Author(s):  
Radia Lourkisti ◽  
Yann Froelicher ◽  
Stéphane Herbette ◽  
Raphael Morillon ◽  
Jean Giannettini ◽  
...  

The triploidy has proved to be a powerful approach breeding programs, especially in Citrus since seedlessness is one of the main consumer expectations. Citrus plants face numerous abiotic stresses including water deficit, which negatively impact growth and crop yield. In this study, we evaluated the physiological and biochemical responses to water deficit and recovery capacity of new triploid hybrids, in comparison with diploid hybrids, their parents (“Fortune” mandarin and “Ellendale” tangor) and one clementine tree used as reference. The water deficit significantly decreased the relative water content (RWC) and leaf gas exchange (Pnet and gs) and it increased the levels of oxidative markers (H2O2 and MDA) and antioxidants. Compared to diploid varieties, triploid hybrids limited water loss by osmotic adjustment as reflected by higher RWC, intrinsic water use efficiency (iWUE Pnet/gs) iWUE and leaf proline levels. These had been associated with an effective thermal dissipation of excess energy (NPQ) and lower oxidative damage. Our results showed that triploidy in citrus enhances the recovery capacity after a water deficit in comparison with diploids due to better carboxylation efficiency, restored water-related parameters and efficient antioxidant system.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 627
Author(s):  
María José Gómez-Bellot ◽  
Beatriz Lorente ◽  
María Fernanda Ortuño ◽  
Sonia Medina ◽  
Ángel Gil-Izquierdo ◽  
...  

Halophytes are capable of coping with excessive NaCl in their tissues, although some species may differ in their degree of salt tolerance. In addition, it is not clear whether they can tolerate other confounding factors and impurities associated with non-conventional waters. The experiment was performed in a greenhouse with Crithmum maritimum and Atriplex halimus plants, growing on soil and irrigated with two different water types: reclaimed wastewater (RWW) (EC: 0.8–1.2 dS m−1) and reverse osmosis brine (ROB) (EC: 4.7–7.9 dS m−1). Both species showed different physiological and nutritional responses, when they were irrigated with ROB. Atriplex plants reduced leaf water potential and maintained leaf turgor as consequence of an osmotic adjustment process. Atriplex showed higher intrinsic water use efficiency than Crithmum, regardless of the type of water used. In Crithmum, the water status and photosynthetic efficiency were similar in both treatments. Crithmum presented a higher leaf accumulation of B and Ca ions, while Atriplex a higher amount of K, Mg, Na and Zn. Crithmum plants irrigated with ROB presented higher concentrations of 1-aminocyclopropane-1-carboxylic acid and trans-zeatin-glucoside, whereas abscisic acid concentration was lower. Atriplex showed a lower concentration of trans-zeatin-riboside and scopoletin. The characteristics associated to water irrigation did not influence negatively the development of any of these species, which confirms the use of brine as an alternative to irrigate them with conventional waters.


2018 ◽  
Vol 76 (2) ◽  
pp. 115-130 ◽  
Author(s):  
G Guo ◽  
K Fang ◽  
J Li ◽  
HW Linderholm ◽  
D Li ◽  
...  

Crop Science ◽  
2002 ◽  
Vol 42 (1) ◽  
pp. 122 ◽  
Author(s):  
A. G. Condon ◽  
R. A. Richards ◽  
G. J. Rebetzke ◽  
G. D. Farquhar

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Surendra Kumar Meena ◽  
Renu Pandey ◽  
Sandeep Sharma ◽  
Gayacharan ◽  
Tarun Kumar ◽  
...  

To understand the physiological basis of tolerance to combined stresses to low phosphorus (P) and drought in mungbean (Vignaradiata (L.) R. Wilczek), a diverse set of 100 accessions were evaluated in hydroponics at sufficient (250 μM) and low (3 μM) P and exposed to drought (dehydration) stress. The principal component analysis and ranking of accessions based on relative values revealed that IC280489, EC397142, IC76415, IC333090, IC507340, and IC121316 performed superior while IC119005, IC73401, IC488526, and IC325853 performed poorly in all treatments. Selected accessions were evaluated in soil under control (sufficient P, irrigated), low P (without P, irrigated), drought (sufficient P, withholding irrigation), and combined stress (low P, withholding irrigation). Under combined stress, a significant reduction in gas exchange traits (photosynthesis, stomatal conductance, transpiration, instantaneous water use efficiency) and P uptake in seed and shoot was observed under combined stress as compared to individual stresses. Among accessions, IC488526 was most sensitive while IC333090 and IC507340 exhibited tolerance to individual or combined stress. The water balance and low P adaptation traits like membrane stability index, relative water content, specific leaf weight, organic acid exudation, biomass, grain yield, and P uptake can be used as physiological markers to evaluate for agronomic performance. Accessions with considerable tolerance to low P and drought stress can be either used as ‘donors’ in Vigna breeding program or cultivated in areas with limited P and water availability or both.


Sign in / Sign up

Export Citation Format

Share Document