scholarly journals Impact of El Niño on Oil Palm Yield in Malaysia

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2189
Author(s):  
Jen Feng Khor ◽  
Lloyd Ling ◽  
Zulkifli Yusop ◽  
Wei Lun Tan ◽  
Joan Lucille Ling ◽  
...  

Oil palm crop yield is sensitive to heat and drought. Therefore, El Niño events affect oil palm production, resulting in price fluctuations of crude palm oil due to global supply shortage. This study developed a new Fresh Fruit Bunch Index (FFBI) model based on the monthly oil palm fresh fruit bunch (FFB) yield data, which correlates directly with the Oceanic Niño Index (ONI) to model the impact of past El Niño events in Malaysia in terms of production and economic losses. FFBI is derived from Malaysian monthly FFB yields from January 1986 to July 2021 in the same way ONI is derived from monthly sea surface temperatures (SST). With FFBI model, the Malaysian oil palm yields are better correlated with ONI and have higher predictive ability. The descriptive and inferential statistical assessments show that the newly proposed FFBI time series model (adjusted R-squared = 0.9312 and residual median = 0.0051) has a better monthly oil palm yield predictive ability than the FFB model (adjusted R-squared = 0.8274 and residual median = 0.0077). The FFBI model also revealed an oil palm under yield concern of the Malaysian oil palm industry in the next thirty-month forecasted period from July 2021 to December 2023.

2020 ◽  
Author(s):  
Lina Teckentrup ◽  
Martin G. De Kauwe ◽  
Andrew J. Pitman ◽  
Benjamin Smith

Abstract. The El Niño‐Southern Oscillation (ENSO) influences the global climate and the variability in the terrestrial carbon cycle on interannual timescales. Two different expressions of El Niño have recently been identified: (i) Central–Pacific (CP) and (ii) Eastern–Pacific (EP). Both types of El Nino are characterised by above average sea surface temperature anomalies in the respective locations. Studies exploring the impact of these expressions of El Niño on the carbon cycle have identified changes in the amplitude of the concentration of interannual atmospheric carbon dioxide (CO2) variability, as well as different lags in terrestrial CO2 release to the atmosphere following increased tropical near surface air temperature. We employ the dynamic global vegetation model LPJ–GUESS within a synthetic experimental framework to examine the sensitivity and potential long term impacts of these two expressions of El Niño on the terrestrial carbon cycle. We manipulated the occurrence of CP and EP events in two climate reanalysis datasets during the later half of the 20th and early 21st century by replacing all EP with CP and separately all CP with EP El Niño events. We found that the different expressions of El Niño affect interannual variability in the terrestrial carbon cycle. However, the effect on longer timescales was negligible for both climate reanalysis datasets. We conclude that capturing any future trends in the relative frequency of CP and EP El Niño events may not be critical for robust simulations of the terrestrial carbon cycle.


2017 ◽  
Vol 8 (3) ◽  
pp. 749-771 ◽  
Author(s):  
Praveen Noojipady ◽  
Douglas C. Morton ◽  
Wilfrid Schroeder ◽  
Kimberly M. Carlson ◽  
Chengquan Huang ◽  
...  

Abstract. Indonesia and Malaysia have emerged as leading producers of palm oil in the past several decades, expanding production through the conversion of tropical forests to industrial plantations. Efforts to produce sustainable palm oil, including certification by the Roundtable on Sustainable Palm Oil (RSPO), include guidelines designed to reduce the environmental impact of palm oil production. Fire-driven deforestation is prohibited by law in both countries and a stipulation of RSPO certification, yet the degree of environmental compliance is unclear, especially during El Niño events when drought conditions increase fire risk. Here, we used time series of satellite data to estimate the spatial and temporal patterns of fire-driven deforestation on and around oil palm plantations. In Indonesia, fire-driven deforestation accounted for one-quarter of total forest losses on both certified and noncertified plantations. After the first plantations in Indonesia received RSPO certification in 2009, forest loss and fire-driven deforestation declined on certified plantations but did not stop altogether. Oil palm expansion in Malaysia rarely involved fire; only 5 % of forest loss on certified plantations had coincident active fire detections. Interannual variability in fire detections was strongly influenced by El Niño and the timing of certification. Fire activity during the 2002, 2004, and 2006 El Niño events was similar among oil palm plantations in Indonesia that would later become certified, noncertified plantations, and surrounding areas. However, total fire activity was 75 % and 66 % lower on certified plantations than noncertified plantations during the 2009 and 2015 El Niño events, respectively. The decline in fire activity on certified plantations, including during drought periods, highlights the potential for RSPO certification to safeguard carbon stocks in peatlands and remaining forests in accordance with legislation banning fires. However, aligning certification standards with satellite monitoring capabilities will be critical to realize sustainable palm oil production and meet industry commitments to zero deforestation.


2014 ◽  
Vol 41 (13) ◽  
pp. 4654-4663 ◽  
Author(s):  
Shineng Hu ◽  
Alexey V. Fedorov ◽  
Matthieu Lengaigne ◽  
Eric Guilyardi

2009 ◽  
Vol 22 (11) ◽  
pp. 3167-3174 ◽  
Author(s):  
Andréa S. Taschetto ◽  
Matthew H. England

Abstract This study investigates interseasonal and interevent variations in the impact of El Niño on Australian rainfall using available observations from the postsatellite era. Of particular interest is the difference in impact between classical El Niño events wherein peak sea surface temperature (SST) anomalies appear in the eastern Pacific and the recently termed El Niño “Modoki” events that are characterized by distinct warm SST anomalies in the central Pacific and weaker cold anomalies in the west and east of the basin. A clear interseasonal and interevent difference is apparent, with the maximum rainfall response for Modoki events occurring in austral autumn compared to austral spring for classical El Niños. Most interestingly, the Modoki and non-Modoki El Niño events exhibit a marked difference in rainfall impact over Australia: while classical El Niños are associated with a significant reduction in rainfall over northeastern and southeastern Australia, Modoki events appear to drive a large-scale decrease in rainfall over northwestern and northern Australia. In addition, rainfall variations during March–April–May are more sensitive to the Modoki SST anomaly pattern than the conventional El Niño anomalies to the east.


2021 ◽  
Vol 4 (17) ◽  
pp. 83-94
Author(s):  
Ricky Anak Kemarau ◽  
Oliver Valentine Eboy

The years 1997/1998 and 2015/2016 saw the occurrence of El Niño occur among the worst in human history. Until now there is still a lack of research in studying the degree of El Niño's strength impact on climate and weather, especially in the tropic region. The objective of this study is to study the effectiveness of remote sensing technology in identifying the differences between the 1997/1998 and 2015/2016 El Niño events. This study uses six satellite data and temperature data from the Malaysia Meteorology Department (MMD). The first step of remote sensing data will be through pre-processing, converting digital Numbers (DN) to Land Surface Temperature (LST). The results of the study found that there was a change in the pattern of LST columns during the 1997/1998 and 2015/2016 El Niño events. Spatial patterns change based on Oceanic Niño Index (ONI) values. The results of this study are important because of the importance of spatial information to those responsible for preparing measures to overcome and reduce the impact of El Niño on the population. at the developing country level, including Malaysia, there is still a lack of information technology infrastructure in channeling useful information to the community. Through the information, this spatial information provides critical hot spot information that needs more attention.


2021 ◽  
Vol 18 (6) ◽  
pp. 2181-2203
Author(s):  
Lina Teckentrup ◽  
Martin G. De Kauwe ◽  
Andrew J. Pitman ◽  
Benjamin Smith

Abstract. The El Niño‐-Southern Oscillation (ENSO) influences the global climate and the variability in the terrestrial carbon cycle on interannual timescales. Two different expressions of El Niño have recently been identified: (i) central Pacific (CP) and (ii) eastern Pacific (EP). Both types of El Niño are characterised by above-average sea surface temperature anomalies at the respective locations. Studies exploring the impact of these expressions of El Niño on the carbon cycle have identified changes in the amplitude of the concentration of interannual atmospheric carbon dioxide (CO2) variability following increased tropical near-surface air temperature and decreased precipitation. We employ the dynamic global vegetation model LPJ-GUESS (Lund–Potsdam–Jena General Ecosystem Simulator) within a synthetic experimental framework to examine the sensitivity and potential long-term impacts of these two expressions of El Niño on the terrestrial carbon cycle. We manipulated the occurrence of CP and EP events in two climate reanalysis datasets during the latter half of the 20th and early 21st century by replacing all EP with CP and separately all CP with EP El Niño events. We found that the different expressions of El Niño affect interannual variability in the terrestrial carbon cycle. However, the effect on longer timescales was small for both climate reanalysis datasets. We conclude that capturing any future trends in the relative frequency of CP and EP El Niño events may not be critical for robust simulations of the terrestrial carbon cycle.


2018 ◽  
Author(s):  
Jose R Marin Jarrin ◽  
Pelayo Salinas-de-León

El Niño events heavily influence physical characteristics in the Tropical Eastern Pacific and lead to a decrease in nutrient and phytoplankton concentrations and to variation in the composition of the marine trophic chain. However, El Niño events can also provide an opportunity to evaluate the possible effects climate change may have on marine ecosystems. The Galapagos Marine Reserve coastal fin-fish fishery supports approximately 400 fishers that target species that include benthic/demersal predatory fish such as the endemic Galapagos whitespotted sandbass (Paralabrax albomaculatus), the regional endemic sailfin grouper (Mycteroperca olfax) and mottled scorpion fish (Pontinus clemensi), and the misty grouper (Hyporthodon mystacinus). The first two species are listed as vulnerable and endangered, respectively, on the IUCN red list of threatened species. Despite their potential effects on the biota, at present it is unclear how El Niño events influence artisanal fin-fish fisheries in the Galapagos. To study the impacts of El Niño events on the fishery, numerical percentage catch composition at the largest dock in Santa Cruz Island was recorded during March and April 2013, 2014 and 2016 and compared. Compositions were significantly different between 2016 and both 2013 and 2014, but not between 2013 and 2014. These differences appear to have been due to the appearance of uncommon demersal/benthic predatory fish such as Grape eye seabass (Hemilutjanus macrophthalmos) and Pacific dog snapper (Lutjanus novemfasciatus). Size frequency distributions also varied, with significantly larger sizes of several species observed in 2016 when compared to 2013 or 2014. These changes in catch composition and size may be a product of a reduction in nutrient concentration and primary production that led to an increase in water clarity and decrease in prey biomass that forced these benthic fish species to change their feeding behavior and strike at baits that usually would not be easily detected. Because of the conservative life history many of these benthic predatory fish exhibit and the absence of any form of management for fish species in the GMR, El Niño events may have profound effects on their populations due to the elimination of the largest individuals. Management actions, such as size and catch limits and closures, directed at reducing the impact of the fishery on these important fish populations in the near- (El Niños) and long-term (climate change) future should be encouraged.


2019 ◽  
Vol 15 (2) ◽  
pp. 111-118
Author(s):  
Samuel Laimeheriwa ◽  
Mitha Pangaribuan ◽  
Martha Amba

El Nino is one of the global phenomena that has affected the climate system of Indonesia, including Ambon Island of Maluku. One of the direct impacts of the El Nino phenomenon is the decrease of water availability on agricultural land. This study aimed: i) to analyze the period of El-Nino extreme rainfall events in  Ambon Island as well as the intensity and its frequency; and ii) to analyze the impact of El Nino events on the water balance of agricultural lands on Ambon Island. Sixty years of climatic data period 1959-2018 from Pattimura Meteorological Station and Karang Panjang Geophysics Station were used to analyze extreme rainfall conditions of El Nino, and to calculate the water balance of land using the methods of  Thornthwaite and Mather (1957). The results showed that 16 times El Nino events occurred in Ambon between 1959 and 2018, with the frequency of 1-7 times per year or four times per year.  The most extreme El Nino events that occurred in Ambon were in 1977, 1987 and 1997.  The results of land water balance calculation during the El-Nino events showed seven months water deficit (September to March) which is 62,6% higher than the normal conditions;  meanwhile, the optimum soil moisture occurred four months (June to September) or seven months shorter than the normal conditions which were 11 months (March to January). Keywords: Ambon Island, El Nino, land-water balance   ABSTRAK El Nino merupakan salah satu fenomena global yang berdampak terhadap sistem iklim di wilayah Indonesia; termasuk wilayah Pulau Ambon Provinsi Maluku. Salah satu dampak langsung fenomena El Nino terhadap sistem pertanian adalah berkurangnya ketersediaan air pada lahan pertanian. Penelitian bertujuan untuk: a) menganalisis tahun-tahun kejadian curah hujan ekstrim El Nino serta intensitas dan frekuensinya di Pulau Ambon; dan b) menganalisis dampak kejadian El Nino terhadap neraca air lahan pertanian di Pulau Ambon. Penelitian ini menggunakan data iklim selama 60 tahun pengamatan periode 1959-2018 dari Stasiun Meteorologi Pattimura Ambon dan Stasiun Geofisika Karang Panjang Ambon. Analisis data iklim dilakukan dengan tahapan sebagai berikut: a) analisis curah hujan pada kondisi ekstrim El Nino; dan b) perhitungan neraca air lahan menggunakan metode Thornthwaite dan Mather (1957). Hasil penelitian menunjukkan bahwa selama periode 1959-2018 kejadian El Nino berlangsung di Pulau Ambon sebanyak 16 kali dengan frekuensi 1-7 tahun sekali atau rata-rata 4 tahun sekali. Tahun-tahun kejadian El Nino di wilayah Pulau Ambon yang paling ekstrim terjadi pada tahun 1977, 1987 dan 1997. Berdasarkan perhitungan neraca air lahan, ketika El-Nino berlangsung defisit air terjadi selama 7 bulan (September sampai dengan Maret); nilainya bertambah sebesar 626% dari kondisi normal, dan kadar air tanah pada kondisi optimum hanya 4 bulan (Juni sampai dengan September) atau lebih pendek 7 bulan dibandingkan kondisi normalnya, yaitu 11 bulan (Maret sampai dengan Januari). Kata kunci: El Nino, neraca air lahan, Pulau Ambon


2009 ◽  
Vol 20 (2) ◽  
pp. 303-332 ◽  
Author(s):  
David G. Beresford-Jones ◽  
Susana Arce T. ◽  
Oliver Q. Whaley ◽  
Alex J. Chepstow-Lusty

AbstractThe lower Ica Valley on the hyperarid south coast of Peru is today largely depopulated and bereft of cultivation, yet its extensive archaeological remains attest to substantial prehispanic populations. This paper describes archaeological investigations to retrace changes in geomorphology, ecology, and land-use in Samaca, one of the riparian oasis basins of the lower Río lea, with the aim of investigating when, how, and why such changes took place. Archaeological interpretations of culture change in the region often invoke the impacts of major ENSO perturbations (El Niño). While our investigations confirm that major El Niño events around the end of the Early Intermediate Period likely offer part of the explanation for marked landscape change in the Samaca Basin, we also demonstrate the significance of more gradual, human-induced destruction of Prosopis pallida (huarango) riparian dry-forest. Huarango is a remarkable leguminous hardwood that lives for over a millennium and provides forage, fuel, and food. Moreover, it plays a crucial role in integrating fragile desert ecosystems, enhancing soil fertility and moisture, and accomplishing desalination and microclimatic amelioration. We propose that south coast valleys remained densely forested well into the Early Intermediate Period, attenuating the impact of El Niño events and supporting hitherto underappreciated agroforestry adaptations. Gradual deforestation eventually crossed an environmental threshold: river and wind erosion increased dramatically and precipitated radical desertification, feeding back into cultural changes in the Middle Horizon. Thus we argue Prosopis-human ecological relationships merit proper recognition in our archaeological interpretations of the south coast of Peru.


Sign in / Sign up

Export Citation Format

Share Document